Journal of Guangdong University of Technology ›› 2022, Vol. 39 ›› Issue (01): 21-33.doi: 10.12052/gdutxb.210128

Previous Articles     Next Articles

Research Progress of Lignin-derived Biodegradable Composite Film Materials

Hao Yan-ping1, Luo Tong1, Lyu Gao-jin1,2, Wang Chao1, Zhou Hao2, Yang Gui-hua1, Chen Jia-chuan1   

  1. 1. State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China;
    2. RZBC Group Co., Ltd., Rizhao 276800, China
  • Received:2021-08-30 Published:2022-01-20

Abstract: The non-degradability of traditional plastic film products leads to serious environmental and social issues, which promotes the development of biodegradable composite film materials. Recent advances in abundant natural polymeric materials with different structural properties and excellent biodegradability were presented. Lignin, as the most abundant aromatic polymer, is considered a promising choice to manufacture multifarious advanced and functional film materials. From the perspective of sustainable development, the structure, chemical characteristics, fractionation methods of lignin are first introduced, and then a review focuses on the preparation of biodegradable composite film material and recent progress of lignin-derived biodegradable film materials with designed functionalities for different applications, such as degradable plastic film material, packaging materials, sensor response materials, antibacterial, and UV protection. Finally, the main problems faced by lignin-based biodegradable composite film materials are discussed, and the potential development directions for environmental-friendly lignin-based functional membrane materials in the future are proposed.

Key words: lignin, polymer, biodegradable, composite film material

CLC Number: 

  • TQ314.1
[1] LI L, LUO Y, LI R, et al. Effective uptake of submicrometre plastics by crop plants via a crack- entry mode [J]. Nature Sustainability, 2020, 3(11): 929-937.
[2] WANG Q, ZHENG C, ZHANG J, et al. Insights into the adsorption of Pb(II) over trimercapto-s-triazine trisodium salt-modified lignin in a wide pH range [J]. Chemical Engineering Journal Advances, 2020, 1: 100002.
[3] 路瑶, 魏贤勇, 宗志敏, 等. 木质素的结构研究与应用[J]. 化学进展, 2013, 25(5): 838-858.
LU Y, WEI X Y, ZONG Z M, et al. Structural investigation and application of lignins [J]. Progress in Chemistry, 2013, 25(5): 838-858.
[4] YANG W, FORTUNATI E, GAO D, et al. Valorization of acid isolated high yield lignin nanoparticles as innovative antioxidant/antimic- robial organic materials [J]. ACS Sustainable Chemistry & Engineering, 2018, 6(3): 3502-3514.
[5] LI C, CHEN C, WU X, et al. Recent advancement in lignin biorefinery: with special focus on enzymatic degradation and valorization [J]. Bioresource Technology, 2019, 291: 121898.
[6] BRAZIL T R, GONCALVES M, JUNIOR M S O, et al. A statistical approach to optimize the activated carbon production from Kraft lignin based on conventional and microwave processes [J]. Microporous and Mesoporous Materials, 2020, 308: 110485.
[7] YU O, KIM K H. Lignin to materials: a focused review on recent novel lignin applications [J]. Applied Sciences, 2020, 10(13): 4626.
[8] DORRESTIJN E, LAARHOVEN L J J, ARENDS I W C E, et al. The occurrence and reactivity of phenoxyl linkages in lignin and low rank coal [J]. Journal of Analytical and Applied Pyrolysis, 2000, 54(1): 153-192.
[9] SAJJADI M, AHMADPOOR F, NASROLLAHZADEH M, et al. Lignin-derived (nano)materials for environmental pollution remediation: current challenges and future perspectives [J]. International Journal of Biological Macromolecules, 2021, 178: 394-423.
[10] 雷鸣. 木质素结构单元间主要化学键连接在热解过程的断裂与重组机制研究[D]. 广州: 华南理工大学, 2019.
[11] CHIO C, SAIN M, QIN W. Lignin utilization: a review of lignin depolymerization from various aspects [J]. Renewable and Sustainable Energy Reviews, 2019, 107: 232-249.
[12] LU F, YUE F. Lignin: biosynthesis, functions and economic significance [M]. New York: Nova Science Publishers, Inc. , 2019.
[13] 岳凤霞, 林敏生, 钱勇, 等. 木质素抗紫外辐射性能应用研究进展[J]. 林业工程学报, 2021, 6(2): 12-20.
YUE F X, LIN M S, QIAN Y, et al. Recent advances of anti-UV radiation of lignin [J]. Journal of Forestry Engineering, 2021, 6(2): 12-20.
[14] 马艾丽. 木质素高值化材料的制备与应用性能研究[D]. 广州: 华南理工大学, 2014.
[15] RICHTER A P, BROWN J S, BHARTI B, et al. An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core [J]. Nature Nanotechnology, 2015, 10(9): 817-823.
[16] LI P, LYU W, AI S. Green and gentle synthesis of Cu2O nanoparticles using lignin as reducing and capping reagent with antibacterial properties [J]. Journal of Experimental Nanoscience, 2016, 11(1): 18-27.
[17] CERRUTTI B, MORAES M L, PULCINELLI S, et al. Lignin as immobilization matrix for HIV p17 peptide used in immunosensing [J]. Biosensors & bioelectronics, 2015, 71: 420-426.
[18] DURING A, DEBOUCHE C, RAAS T, et al. Among plant lignans, pinoresinol has the strongest antiinflammatory properties in human intestinal Caco-2 cells [J]. The Journal of nutrition, 2012, 142(10): 1798-1805.
[19] FIGUEIREDO P, LINTINEN K, HIRVONEN J T, et al. Properties and chemical modifications of lignin: towards lignin-based nanomaterials for biomedical applications [J]. Progress in Materials Science, 2018, 93: 233-269.
[20] 杨军艳, 毕宇霆, 吴建新, 等. 木质素化学改性研究进展[J]. 上海应用技术学院学报(自然科学版), 2015, 15(1): 29-39.
YANG J Y, BI Y T, WU J X, et al. Research advances in chemical modification of lignin [J]. Journal of Shanghai Institute of Technology(Natural Science), 2015, 15(1): 29-39.
[21] LAURICHESSE S, AVÉROUS L. Chemical modification of lignins: towards biobased polymers [J]. Progress in Polymer Science, 2014, 39(7): 1266-1290.
[22] 文甲龙, 陈天影, 孙润仓. 生物质木质素分离和结构研究方法进展[J]. 林业工程学报, 2017, 2(5): 76-84.
WEN J L, CHEN T Y, SUN R C. Research progress on separation and structural analysis of lignin in lignocellulosic biomass [J]. Journal of Forestry Engineering, 2017, 2(5): 76-84.
[23] HU Z, YEH T F, CHANG H M, et al. Elucidation of the structure of cellulolytic enzyme lignin [J]. Holzforschung, 2006, 60(4): 389-397.
[24] WU S, ARGYROPOULOS D. An improved method for isolating lignin in high yield and purity [J]. Journal of Pulp and Paper Science, 2003, 29(7): 235-240.
[25] CHEN T Y, WANG B, WU Y, et al. Structural variations of lignin macromolecule from different growth years of Triploid of Populus tomentosa Carr [J]. International Journal of Biological Macromolecules, 2017, 101: 747-757.
[26] LU Y, LU Y C, HU H Q, et al. Structural characterization of lignin and its degradation products with spectroscopic methods [J]. Journal of Spectroscopy, 2017, 2017: 1-15.
[27] 苏秀茹, 傅英娟, 李宗全, 等. 木质素的分离提取与高值化应用研究进展[J]. 大连工业大学学报, 2021, 40(2): 107-115.
SU X R, FU Y J, LI Z Q, et al. Research progress on extraction and high-value application of lignin [J]. Journal of Dalian Polytechnic University, 2021, 40(2): 107-115.
[28] 李利芬, 胡英成. 离子液体在木质素研究中的应用[J]. 林产化学与工业, 2015, 35(2): 163-170.
LI L F, HU Y C. Application of ionic liquids in lignin processing [J]. Chemistry and Industry of Forest Products, 2015, 35(2): 163-170.
[29] TAN Y T, NGOH G C, CHUA A S M. Effect of functional groups in acid constituent of deep eutectic solvent for extraction of reactive lignin [J]. Bioresource Technology, 2019, 281: 359-366.
[30] ZHANG Z, XIN L, QI J, et al. Selective electro-conversion of glycerol to glycolate on carbon nanotube supported gold catalyst [J]. Green Chemistry, 2012, 14(8): 2150-2152.
[31] 王毕魁, 盛丽萍, 舒友, 等. 木质素基生物降解高分子材料的研究进展[J]. 邵阳学院学报(自然科学版), 2020, 17(1): 73-80.
WANG B K, SHENG L P, SHU Y, et al. Research progress of lignin-based biodegradable polymer composites [J]. Journal of Shaoyang University(Natural Science Edition), 2020, 17(1): 73-80.
[32] WANG H M, YUAN T Q, SONG G Y, et al. Advanced and versatile lignin-derived biodegradable composite film materials toward a sustainable world [J]. Green Chemistry, 2021, 23(11): 3790-3817.
[33] 朱建, 陈慧, 卢凯, 等. 淀粉基生物可降解材料的研究新进展[J]. 高分子学报, 2020, 51(9): 983-995.
ZHU J, CHEN H, LU K, et al. Recent progress on starch-based biodegradable materials [J]. Acta Polymerica Sinica, 2020, 51(9): 983-995.
[34] JIMÉNEZ A, FABRA M J, TALENS P, et al. Edible and biodegradable starch films: a review [J]. Food and Bioprocess Technology, 2012, 5(6): 2058-2076.
[35] SHI R, LI B. Synthesis and characterization of cross-linked starch/lignin film [J]. Starch-Stärke, 2016, 68(11-12): 1224-1232.
[36] 吕星毅, 曹巍瀚, 杨琰嘉, 等. 淀粉/木质素复合膜的制备与性能研究[J]. 广东化工, 2017, 44(20): 18-19.
LYU X Y, CAO W H, YANG Y J, et al. Preparation and characterization of starch/lignin composite films [J]. Guangdong Chemical Industry, 2017, 44(20): 18-19.
[37] BHAT R, ABDULLAH N, DIN R H, et al. Producing novel sago starch based food packaging films by incorporating lignin isolated from oil palm black liquor waste [J]. Journal of Food Engineering, 2013, 119(4): 707-713.
[38] MUJTABA M, MORSI R E, KERCH G, et al. Current advancements in chitosan-based film production for food technology:a review [J]. International Journal of Biological Macromolecules, 2019, 121: 889-904.
[39] CHEN L, TANG C Y, NING N Y, et al. Preparation and properties of chitosan/lignin composite films [J]. Chinese Journal of Polymer Science, 2009, 27(5): 739-746.
[40] YANG W, OWCZAREK J S, FORTUNATI E, et al. Antioxidant and antibacterial lignin nanoparticles in polyvinyl alcohol/chitosan films for active packaging [J]. Industrial Crops and Products, 2016, 94: 800-811.
[41] 苏玲, 李珊珊, 方桂珍. 碱木质素壳聚糖反应膜的制备与性能[J]. 功能材料, 2013, 44(9): 1353-1358.
SU L, LI S S, FANG G Z. Preparation and performance of alkali lignin/chitosan reaction film [J]. Journal of Functional Materials, 2013, 44(9): 1353-1358.
[42] DUAN Y, FREYBURGER A, KUNZ W, et al. Lignin/chitin films and their adsorption characteristics for heavy metal Ions [J]. ACS Sustainable Chemistry & Engineering, 2018, 6(5): 6965-6973.
[43] AVEROUS L. Handbook of biopolymers and biodegradable plastics [M]. Amsterdam: William Andrew, 2013: 171.
[44] YANG Y, ZHANG L, XIONG Z, et al. Research progress in the heat resistance, toughening and filling modification of PLA [J]. Science China Chemistry, 2016, 59(11): 1355-1368.
[45] LI X, HEGYESI N, ZHANG Y, et al. Poly(lactic acid)/lignin blends prepared with the Pickering emulsion template method [J]. European Polymer Journal, 2019, 110: 378-384.
[46] MU C Y, XUE L Y, ZHU J, et al. Mechanical and thermal properties of toughened poly(L-lactic) acid and lignin blends [J]. BioResources, 2014, 9(3): 5557-5566.
[47] GORDOBIL O, EGÜÉS I, LLANO-PONTE R, et al. Physicochemical properties of PLA lignin blends [J]. Polymer Degradation and Stability, 2014, 108: 330-338.
[48] GORDOBIL O, EGÜÉS I, LABIDI J. Modification of Eucalyptus and Spruce organosolv lignins with fatty acids to use as filler in PLA [J]. Reactive and Functional Polymers, 2016, 104: 45-52.
[49] SHANKAR S, RHIM J-W, WON K. Preparation of poly(lactide)/lignin/silver nanoparticles composite films with UV light barrier and antibacterial properties [J]. International Journal of Biological Macromolecules, 2018, 107: 1724-1731.
[50] 贺晓艳. 改性纳米木质素增强可降解聚合物薄膜性能研究[D]. 哈尔滨: 东北林业大学, 2019.
[51] WANG X, BIAN H, NI S, et al. BNNS/PVA bilayer composite film with multiple-improved properties by the synergistic actions of cellulose nanofibrils and lignin nanoparticles [J]. International Journal of Biological Macromolecules, 2020, 157: 259-266.
[52] 苏玲. 碱木质素-PVA基交联薄膜的制备与性能研究[D]. 哈尔滨: 东北林业大学, 2015.
[53] 姜黎, 叶德展, 张明华, 等. 木质素磺酸钙/聚乙烯醇共混体系的结构与性能[J]. 高分子材料科学与工程, 2015, 31(5): 32-38.
JIANG L, YE D Z, ZHANG M H, et al. Structure and properties of lignosulfonate calcium/polyvinyl alcohol blends [J]. Polymer Materials Science and Engineering, 2015, 31(5): 32-38.
[54] ZHANG X, LIU W, LIU W, et al. High performance PVA/lignin nanocomposite films with excellent water vapor barrier and UV-shielding properties [J]. International Journal of Biological Macromolecules, 2020, 142: 551-558.
[55] POSOKNISTAKUL P, TANGKRAKUL C, CHAOSUANPHAE P, et al. Fabrication and characterization of lignin particles and their ultraviolet protection ability in PVA composite film [J]. ACS Omega, 2020, 5(33): 20976-20982.
[56] LUO T, WANG C, JI X, et al. Innovative production of lignin nanoparticles using deep eutectic solvents for multifunctional nanocomposites [J]. International Journal of Biological Macromolecules, 2021, 183: 781-789.
[57] 陈韶辉, 李涛. 生物降解塑料的产业现状及其发展前景[J]. 现代塑料加工应用, 2020, 32(2): 50-54.
CHEN S H, LI T. Industry statue development prospects of biodegradable plastics [J]. Modern Plastics Processing and Applications, 2020, 32(2): 50-54.
[58] WATTANAWONG N, AHT-ONG D. Antibacterial activity, thermal behavior, mechanical properties and biodegradability of silver zeolite/poly(butylene succinate) composite films [J]. Polymer Degradation and Stability, 2021, 183: 109459.
[59] KHAN H, KAUR S, BALDWIN T C, et al. Effective control against broadleaf weed species provided by biodegradable PBAT/PLA mulch film embedded with the Herbicide 2-methyl-4-chlorophenoxyacetic acid (MCPA) [J]. ACS Sustainable Chemistry & Engineering, 2020, 8(13): 5360-5370.
[60] ZHANG Y, ZHOU S, FANG X, et al. Renewable and flexible UV-blocking film from poly(butylene succinate) and lignin [J]. European Polymer Journal, 2019, 116: 265-274.
[61] LIU L, HUANG G, SONG P, et al. Converting industrial alkali lignin to biobased functional additives for improving fire behavior and smoke suppression of polybutylene succinate [J]. ACS Sustainable Chemistry & Engineering, 2016, 4(9): 4732-4742.
[62] QIU S, ZHOU Y, WATERHOUSE G I N, et al. Optimizing interfacial adhesion in PBAT/PLA nanocomposite for biodegradable packaging films [J]. Food Chemistry, 2021, 334: 127487.
[63] XIONG S J, PANG B, ZHOU S J, et al. Economically competitive biodegradable PBAT/lignin composites: effect of lignin methylation and compatibilizer [J]. ACS Sustainable Chemistry & Engineering, 2020, 8(13): 5338-5346.
[64] XING Q, RUCH D, DUBOIS P, et al. Biodegradable and high-performance poly(butylene adipate-co-terephthalate)-lignin UV-blocking films [J]. ACS Sustainable Chemistry & Engineering, 2017, 5(11): 10342-10351.
[65] XING Q, BUONO P, RUCH D, et al. Biodegradable UV-blocking films through core–shell lignin–melanin nanoparticles in poly(butylene adipate-co-terephthalate) [J]. ACS Sustainable Chemistry & Engineering, 2019, 7(4): 4147-4157.
[66] 赵鑫, 常静. ε-己内酯与聚己内酯研究应用进展[J]. 煤炭与化工, 2021, 44(4): 130-134.
ZHAO X, CHANG J. Progress in research and application of ε-caprolactone and polycaprolactone [J]. Coal and Chemical Industry, 2021, 44(4): 130-134.
[67] CHENG P F, LIANG M, YUN X Y, et al. Biodegradable blend films of poly(ε-caprolactone)/poly(propylene carbonate) for shelf life extension of whole white button mushrooms [J]. Journal of Food Science and Technology, 2021, 6: 1-13.
[68] OUYANG W Z, HUANG Y. Cellulolytic enzyme lignin efficiently blended with polycaprolactone: thermal, mechanical properties and morphological evaluation [J]. Advanced Materials Research, 2014, 1070-1072: 100-106.
[69] 王飞. 木质素/聚己内酯降解塑料的制备及性能研究[D]. 绵阳: 西南科技大学, 2015.
[70] YANG W, QI G, DING H, et al. Biodegradable poly (lactic acid)-poly (ε-caprolactone)-nanolignin composite films with excellent flexibility and UV barrier performance [J]. Composites Communications, 2020, 22: 100497.
[71] ZHANG Y, LIAO J, FANG X C, et al. Renewable high-performance polyurethane bioplastics derived from lignin-poly(ε-caprolactone) [J]. ACS Sustainable Chemistry & Engineering, 2017, 5(5): 4276-4284.
[72] 雍婕, 程益, 周海燕. 地膜降解途径及机理研究进展[J]. 应用生态学报, 2021, 32(2): 729-736.
YONG J, CHENG Y, ZHOU H Y. Advances in researches of the mulch-film degradation and the underlying mechanism [J]. Chinese Journal of Applied Ecology, 2021, 32(2): 729-736.
[73] 靳拓, 薛颖昊, 张明明, 等. 国内外农用地膜使用政策、执行标准与回收状况[J]. 生态环境学报, 2020, 29(2): 411-420.
JIN T, XUE Y H, ZHANG M M, et al. Research advances in regulations, standards and recovery of mulch film [J]. Ecology and Environmental Sciences, 2020, 29(2): 411-420.
[74] 陈夫山, 王帅. 木质素基环保地膜的研究[J]. 造纸科学与技术, 2014, 33(2): 88-91.
CHEN F S, WANG S. Study on environmentally friendly lignin based mulching films [J]. Paper Science & Technology, 2014, 33(2): 88-91.
[75] ZHANG Y, WANG J, FANG X, et al. High solid content production of environmentally benign ultra-thin lignin-based polyurethane films: Plasticization and degradation [J]. Polymer, 2019, 178: 121572.
[76] 康智勇, 杨浩雄. 我国塑料食品包装的安全性分析[J]. 中国塑料, 2018, 32(10): 13-19.
KANG Z Y, YANG H X. A brief analysis of safety concerns for plastic food packaging materials in China [J]. China Plastics, 2018, 32(10): 13-19.
[77] RAI S, DUTTA P, MEHROTRA G. Lignin incorporated antimicrobial chitosan film for food packaging application [J]. Journal of Polymer Materials, 2017, 34: 171-183.
[78] SHANKAR S, REDDY J P, RHIM J W. Effect of lignin on water vapor barrier, mechanical, and structural properties of agar/lignin composite films [J]. International Journal of Biological Macromolecules, 2015, 81: 267-273.
[79] RUKMANIKRISHNAN B, RAJASEKHARAN S K, LEE J, et al. K-Carrageenan/lignin composite films: biofilm inhibition, antioxidant activity, cytocompatibility, UV and water barrier properties [J]. Materials Today Communications, 2020, 24: 101346.
[80] WANG J, DENG H Y, Qian Y, et al. Reduction of lignin color via one-step UV irradiation [J]. Green Chemistry, 2015, 18(3): 695-699.
[81] KAI D, TAN M, CHEE P L, et al. Towards lignin-based functional materials in a sustainable world [J]. Green Chemistry, 2016, 18(5): 1175-1200.
[82] 王静雅, 方向晨, 白富栋, 等. 生物可降解的聚己内酯-g-木质素薄膜的制备与性能研究[J]. 华东理工大学学报(自然科学版), 2020, 46(4): 472-479.
WANG J Y, FANG X C, BAI F D, et al. Preparation and properties of biodegradable polycaprolactone grafted lignin films [J]. Journal of East China University of Science and Technology, 2020, 46(4): 472-479.
[83] QIAN Y, ZHONG X W, LI Y, et al. Fabrication of uniform lignin colloidal spheres for developing natural broad-spectrum sunscreens with high sun protection factor [J]. Industrial Crops and Products, 2017, 101: 54-60.
[84] WU W, LIU T, DENG X, et al. Ecofriendly UV-protective films based on poly(propylene carbonate) biocomposites filled with TiO2 decorated lignin [J]. International Journal of Biological Macromolecules, 2019, 126: 1030-1036.
[85] 徐冠豪. 麦草碱木质素/聚乙烯醇共混膜材料的制备与表征[D]. 哈尔滨: 东北林业大学, 2014.
[86] HUANG J, WANG S, LYU S. Facile preparation of a robust and durable superhydrophobic coating using biodegradable lignin-coated cellulose nanocrystal particles [J]. Materials (Basel), 2017, 10(9): 1080.
[87] LANDAETA E, ISAACS M, SCHREBLER R, et al. Enhanced photostability of cuprous oxide by lignin films on glassy carbon electrodes in the transformation of carbon dioxide [J]. Green Chemistry, 2018, 20: 2356-2364.
[1] Wan Tao, Yuan Wen-xiong, Zhao Chen, Min Yong-gang. Research Progress of Two-dimensional Materials and Conducting Polymer Composites in Flexible Supercapacitors [J]. Journal of Guangdong University of Technology, 2023, 40(02): 74-81.
[2] Luo Chao-bing, Li Hai-chao, You Ting-ting, Xu Feng. Progress on Lignin Deep Eutectic Solvent Fractionation, Functional Materials Preparation and Industrial Application [J]. Journal of Guangdong University of Technology, 2022, 39(01): 1-13.
[3] Ma Ming-guo, Yuan Qi. Research Progress of Multifunctional Lignin-based Materials [J]. Journal of Guangdong University of Technology, 2022, 39(01): 14-20,62.
[4] Liu Xue, Liu Zhong-ming, Xi Yue-bin, Wang Shou-juan, Kong Fan-gong. A Study of Preparation and Application Performance of Lignin-based Superhydrophobic Coatings [J]. Journal of Guangdong University of Technology, 2022, 39(01): 34-40,134.
[5] Wen Wei-qiu, Guo Jian-wei. Synthesis of pH-Responsive Star-Shaped Polymeric Micelles for Controlled Drug Delivery [J]. Journal of Guangdong University of Technology, 2021, 38(01): 89-96.
[6] Yang Hui-yan, Guo Jian-wei. A Study of Star pH-Responsive Polymer and Its Self-Assembled Micelles [J]. Journal of Guangdong University of Technology, 2019, 36(01): 81-86.
[7] Zhang Yu-xuan, Huang Chun-dong, Tan Jian-bo. Synthesis of Polymer Nano-objects with Complex Morphologies via Polymerization-induced Self-assembly [J]. Journal of Guangdong University of Technology, 2018, 35(06): 100-106.
[8] Liu Dong-dong, Tan Jian-bo, Zhang Li. Preparation of All-acrylic Diblock Copolymer Nano-objects via Alcoholic Photoinitiated RAFT Dispersion Polymerization [J]. Journal of Guangdong University of Technology, 2018, 35(05): 80-85.
[9] Liu Sa, Zhong Chun-ting, Wang Wei-wei, Wang Yan-yan, Ren Li. A Study of Preparing Self-assembly Brush Polymer by Quartz Crystal Microbalance [J]. Journal of Guangdong University of Technology, 2018, 35(02): 1-5.
[10] Guo Jian-wei, Wen Wei-qiu, Chen Shao-hua, Yue Hang-bo. Synthesis and Washing-Assistant Properties of Poly (disodium cis-epoxysuccinate) Detergent Builder [J]. Journal of Guangdong University of Technology, 2017, 34(02): 17-22.
[11] Fu Li-li, Bai Yu-hao, Zhang Xue-chao, Tan Jian-bo, Zhang Li. Synthesis of Monodisperse PMMA Microspheres by Photoinitiated RAFT Dispersion Polymerization [J]. Journal of Guangdong University of Technology, 2017, 34(02): 34-39.
[12] LI Xiong, GUO Jian-Wei, PAN Li-Hui, FU Shu-Qin, ZHU Dong-Yu. Synthesis and Application Performance of  Maleic Anhydride-Taurine Oligomer [J]. Journal of Guangdong University of Technology, 2015, 32(04): 30-34.
[13] LU Zhi-Qiang, LI De-Yuan, Luca Diviani. Strength Analysis of TSCB Pedestrian Bridges Based on Tsai-Wu Failure Criteria [J]. Journal of Guangdong University of Technology, 2014, 31(1): 101-106.
[14] FU Shu-Qin, GUO Jian-Wei, MA Qian, CHEN Shao-Hua, YANG Ping, CUI Yi-Hua. Preparation and Properties of Biodegradable Polymer Detergent Builder [J]. Journal of Guangdong University of Technology, 2013, 30(4): 39-42.
[15] Lei Cai-hong1,Gou Yu-hui2 . Application of DSC in the Studies of Transesterification Reaction in Polymer Blends [J]. Journal of Guangdong University of Technology, 2009, 26(1): 23-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!