广东工业大学学报 ›› 2020, Vol. 37 ›› Issue (03): 23-35.doi: 10.12052/gdutxb.190123

• • 上一篇    下一篇

近似最近邻大数据检索哈希散列方法综述

费伦科, 秦建阳, 滕少华, 张巍, 刘冬宁, 侯艳   

  1. 广东工业大学 计算机学院, 广东 广州 510006
  • 收稿日期:2019-09-24 出版日期:2020-05-12 发布日期:2020-05-12
  • 作者简介:费伦科(1982-),男,副教授,博士,主要研究方向为模式识别和机器学习
  • 基金资助:
    国家自然科学基金资助项目(61702110,61603100,61972102);广东省自然科学基金资助项目(2019A1515011811);广东省重点领域研发计划项目(2020B010166006)

Hashing for Approximate Nearest Neighbor Search on Big Data: A Survey

Fei Lun-ke, Qin Jian-yang, Teng Shao-hua, Zhang Wei, Liu Dong-ning, Hou Yan   

  1. School of Computers, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2019-09-24 Online:2020-05-12 Published:2020-05-12

摘要: 近似最近邻检索已成为人工智能时代海量数据快速检索主要技术之一。作为高效的近似最近邻检索方法,哈希散列方法受到广泛关注并且层出不穷。到目前为止还没有文献对主流哈希散列方法进行全面地分析和总结。鉴于此,本文首先系统地介绍哈希散列的基本知识,包括距离计算、损失函数、离散约束和外样本计算等。然后,深入对比分析主流哈希散列算法优缺点,并在主流数据库上进行性能评估。最后,总结哈希散列技术目前存在的问题,并提出若干潜在的哈希散列研究方向。本文对设计高效的哈希散列方法具有重要借鉴意义。

关键词: 近似最近邻匹配, 哈希学习, 哈希散列, 数据检索

Abstract: Approximate Nearest Neighbor (ANN) search has served as one of the most important technologies for efficient retrieval of large-scale data in the era of artificial intelligence. As a promising solution to the ANN, hashing has received a lot of attention due to its high efficiency and extensive works have been presented in the literature. However, so far, there is no work with attempt to comprehensively analyze and overview the state-of-the-art hashing methods. To address this, the basics of hashing, including distance calculation, loss function, discrete constraint and out-of-sample learning, are first systematically introduced. Then, the state-of-the-art hashing based methods are comparatively studied and experiments on the widely used databases are conducted to evaluate their performance. Finally, the key problems of hashing methods are summarized and some potential research directions are pointed out. It is believed that this endeavor could provide other researches with a useful guideline in designing effective and efficient hashing methods.

Key words: approximate nearest neighbor search, hashing learning, hashing, data retrieval

中图分类号: 

  • TP391
[1] RUI Y, HUANG T S, CHANG S F. Image retrieval: current techniques, promising directions, and open issues [J]. Journal of Visual Communication and Image Representation, 1999, 10(1): 39-62
[2] HAR-PELED S, INDYK P, MOTWANI R. Approximate nearest neighbor: towards removing the curse of dimensionality [J]. Theory of Computing, 2012, 8(14): 321-350
[3] WEBER R, SCHEK H J, BLOTT S. A quantitative analysis and performance study for similarity- search methods in high-dimensional spaces[C]// International Conference on Very Large Data Bases. San Francisco: VLDB, 1998: 194-205.
[4] FRIEDMAN J H, BENTLEY J L, FINKEL R A. An algorithm for finding best matches in logarithmic expected time [J]. ACM Transactions on Mathematical Software, 1977, 3(3): 209-226
[5] UHLMANN J K. Satisfying general proximity / similarity queries with metric trees [J]. Information Processing Letters, 1991, 40(4): 175-179
[6] 蒋凯, 武港山. 基于Web的信息检索技术综述[J]. 计算机工程, 2005, 31(24): 7-9 JIANG K, WU G S. Overview of information retrieval technology for Web [J]. Computer Engineering, 2005, 31(24): 7-9
[7] JÉGOU H, DOUZE M, SCHMID C. Product quantization for nearest neighbor search [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 33(1): 117-128
[8] KULIS B, DARRELL T. Learning to hash with binary reconstructive embeddings[C]// Advances in Neural Information Processing Systems. Vancouver: NIPS, 2009: 1042-1050
[9] LIU W, WANG J, JI R R, et al. Supervised hashing with kernels[C]// Computer Vision & Pattern Recognition. Providence: IEEE, 2012: 2074-2081.
[10] WANG J, KUMAR S, CHANG S F. Sequential projection learning for hashing with compact codes[C]// International Conference on International Conference on Machine Learning. Haifa: ICML, 2010: 1127-1134.
[11] XU B, BU J, LIN Y, et al. Harmonious hashing[C]// International Joint Conference on Artificial Intelligence. Beijing: IJCAI, 2014: 1820-1826.
[12] HE J, LIU W, CHANG S F. Scalable similarity search with optimized kernel hashing[C]// International Conference on Knowledge Discovery & Data Mining. Boston: ACM SIGKDD, 2010: 1129-1138.
[13] WEISS Y, TORRALBA A, FERGUS R. Spectral hashing[C]// Advances in Neural Information Processing Systems. Vancouver: NIPS, 2009: 1753–1760.
[14] CARREIRA P M. The elastic embedding algorithm for dimensionality reduction[C]// International Conference on Machine Learning. Haifa: ICML, 2010: 167-174.
[15] SHAKHNAROVICH G, VIOLA P, DARRELL T. Fast pose estimation with parameter-sensitive hashing[C]// International Conference on Computer Vision. Nice: IEEE, 2003: 750.
[16] GONG Y, LAZEBNIK S, GORDO A, et al. Iterative quantization: a procrustean approach to learning binary codes for large-scale image retrieval [J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2013, 35(12): 2916-2929
[17] WOLD S, ESBENSEN K, GELADI P. Principal component analysis [J]. Chemometrics & Intelligent Laboratory Systems, 1987, 2(1): 37-52
[18] LIU W, MU C, KUMAR S, et al. Discrete graph hashing[C]// Advances in Neural Information Processing Systems. Montreal: NIPS, 2014: 3419-3427.
[19] LIU W, WANG J, KUMAR S, et al. Hashing with graphs[C]// International Conference on Machine Learning. Bellevue: ICML, 2011: 1-8.
[20] ZHU X, HUANG Z, CHENG H, et al. Sparse hashing for fast multimedia search [J]. ACM Transactions on Information Systems, 2013, 31(2): 1-24
[21] HARDOON D R, SZEDMAK S, SHAWE T J. Canonical correlation analysis: an overview with application to learning methods [J]. Neural Computation, 2004, 16(12): 2639-2664
[22] GIONIS A, INDYK P, MOTWANI R. Similarity search in high dimensions via hashing[C]// International Conference on Very Large Data Bases. San Francisco: Morgan Kaufmann Publishers, 1999: 518-529.
[23] DATAR M, IMMORLICA N, INDYK P, et al. Locality-sensitive hashing scheme based on p-stable distributions[C]// Symposium on Computational Geometry. Brooklyn: SCG, 2004: 253-262.
[24] KULIS B, GRAUMAN K. Kernelized locality-sensitive hashing for scalable image search[C]// International Conference on Computer Vision. Kyoto: IEEE, 2009: 2130- 2137.
[25] 林悦. 基于哈希算法的高维数据的最近邻检索[D]. 杭州: 浙江大学, 2013.
[26] 苏毅娟, 余浩, 雷聪, 等. 基于PCA的哈希图像检索算法[J]. 计算机应用研究, 2018, 35(10): 3147-3150 SU Y J, YU H, LEI C, et al. PCA hashing for image data retrieval [J]. Application Research of Computers, 2018, 35(10): 3147-3150
[27] BODÓ Z, CSATÓ L. Linear spectral hashing [J]. Neurocomputing, 2014, 141: 117-123
[28] 夏立超, 蒋建国, 齐美彬. 基于改进谱哈希的大规模图像检索[J]. 合肥工业大学学报(自然科学版), 2016, 39(8): 1049-1054 XIA L C, JIANG J G, QI M B. A large-scale image retrieval method based on improved spectral hashing [J]. Journal of Hefei University of Technology (Natural Science), 2016, 39(8): 1049-1054
[29] KIM S, CHOI S. Multi-view anchor graph hashing[C]// International Conference on Acoustics, Speech and Signal Processing. Vancouver: IEEE, 2013: 3123-3127.
[30] 吕成钢. 面向大规模图片搜索的基于锚图哈希的半监督度量学习算法[D]. 南京: 南京邮电大学, 2018.
[31] TAKEBE H, UEHARA Y, UCHIDA S. Efficient anchor graph hashing with data-dependent anchor selection [J]. IEICE Transactions on Information and Systems, 2015, E98-(11): 2030-2033
[32] 赵珊, 李永思. 基于随机旋转局部保持哈希的图像检索技术[J]. 工程科学与技术, 2019, 51(2): 144-150 ZHAO S, LI Y S. Image retrieval based on random rotation locality preserving hashing [J]. Advanced Engineering Sciences, 2019, 51(2): 144-150
[33] CARREIRA P M A, RAZIPERCHIKOLAEI R. Hashing with binary autoencoders[C]// Computer Vision & Pattern Recognition. Boston: IEEE, 2015: 557-566.
[34] KONG W, LI W J. Isotropic hashing[C]// International Conference on Neural Information Processing Systems. Vancouver: NIPS, 2012: 1646-1654.
[35] XIA Y, HE K, KOHLI P, et al. Sparse projections for high-dimensional binary codes[C]// Computer Vision & Pattern Recognition. Boston: IEEE, 2015: 3332-3339.
[36] 徐盼盼. 基于哈希学习的图像检索方法研究[D].沈阳: 沈阳工业大学, 2019.
[37] ZHENG M, BU J, CHEN C, et al. Graph regularized sparse coding for image representation [J]. IEEE Transactions on Image Processing, 2011, 20(5): 1327-1336
[38] DING G, ZHOU J, GUO Y, et al. Large-scale image retrieval with sparse embedded hashing [J]. Neurocomputing, 2017, 257: 24-36
[39] LAI Z H, CHEN Y D, WU J, et al. Jointly sparse hashing for image retrieval [J]. IEEE Transactions on Image Processing, 2018, 27(12): 6147-6158
[40] HU M, YANG Y, SHEN F M, et al. Hashing with angular reconstructive embeddings [J]. IEEE Transactions on Image Processing, 2018, 27(2): 545-555
[41] HU D, NIE F P, LI X L. Discrete spectral hashing for efficient similarity retrieval [J]. IEEE Transactions on Image Processing, 2019, 28(3): 1080-1091
[42] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition [J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324
[43] LECUN Y, BOTTOU L, BENGIO Y, et al. MNIST database[DB/OL]. (1998)[2019-12-3]. http://yann.lecun.com/exdb/mnist/.
[44] KRIZHEVSKY A, HINTON G. Learning multiple layers of features from tiny images[R].[S.l.: s.n.], 2009.
[45] KRIZHEVSKY A, HINTON G. CIFAR-10 database[DB/OL].(2009)[2019-12-3]. http://www.cs.toronto.edu/~kriz/cifar.html.
[46] KINNUNEN T, KAMARAINEN J, LENSU L, et al. Making visual object categorization more challenging: randomized Caltech-101 data set[C]// International Conference on Pattern Recognition. Istanbul: IEEE, 2010: 476- 479.
[47] KINNUNEN T, KAMARAINEN J, LENSU L, et al. Cal-tech-101 database[DB/OL]. (2010)[2019-12-3]. http://www.vision.caltech.edu/Image_Datasets/Caltech101/.
[48] XIAO J, HAYS J, EHINGER K A, et al. SUN database: large-scale scene recognition from abbey to zoo[C]// Computer Vision & Pattern Recognition. San Francisco: IEEE, 2010: 3485-3492.
[49] XIAO J, HAYS J, EHINGER K A, et al. SUN397 database[DB/OL]. (2010)[2019-12-3]. https://vision.princeton.edu/projects/2010/SUN/.
[50] WOLF L, HASSNER T, MAOZ I. Face recognition in unconstrained videos with matched background similarity[C]// Computer Vision & Pattern Recognition. Colorado: IEEE, 2011: 529-534.
[51] WOLF L, HASSNER T, MAOZ I. YoutubeFaces database[DB/OL]. (2011)[2019-12-3]. http://www.cs.tau.ac.il/~wolf/ytfaces/index.html.
[52] CHUA T S, TANG J, HONG R, et al. NUS-WIDE: a real-world web image database from National University of Singapore[C]// International Conference on Image & Video Retrieval. Santorini: CIVR, 2009: 48.
[53] CHUA T S, TANG J, HONG R, et al. NUS-WIDE database[DB/OL]. (2009)[2019-12-3]. https://lms.comp.nus.edu.sg/wp-content/uploads/2019/research/nuswide/NUS-WIDE.html.
[54] TORRALBA A, MURPHY K P, FREEMAN W T, et al. Context-based vision system for place and object recognition[C]// International Conference on Computer Vision. Nice: IEEE, 2008: 273-280.
[55] LOWE D G. Object recognition from local scale-invariant features[C]// International Conference on Computer Vision. Kerkyra: IEEE, 1999: 1150-1157.
[56] GONG Y, WANG L, GUO R, et al. Multi-scale orderless pooling of deep convolutional activation features[C]// European Conference on Computer Vision. Zurich: ECCV, 2014: 392-407.
[57] OJALA T, PIETIKAINEN M, MAENPAA T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971-987
[58] WEISS Y, TORRALBA A, FERGUS R. Spectral Hash-ing[CP/OL]. (2009)[2019-12-3]. https://www.cse.huji.ac.il/~yweiss/SpectralHashing/.
[59] LIU W, WANG J, KUMAR S, et al. Anchor Graph Hashing[CP/OL].(2011)[2019-12-3]. http://www.ee.columbia.edu/~wliu/.
[60] GONG Y, LAZEBNIK S, GORDO A, et al. Iterative Quantization[CP/OL].(2013)[2019-12-3]. http://slazebni.cs.illinois.edu/publications.html.
[61] LAI Z H, CHEN Y D, WU J, et al. Jointly Sparse Hashing[CP/OL]. (2018)[2019-12-3]. http://www.scholat.com/laizhihui.
[62] LI X, HU D, NIE F P. Large graph hashing with spectral rotation[C]//Thirty-First AAAI Conference on Artificial Intelligence. San Francisco: AAAI, 2017: 2203-2209.
[63] LI X, HU D, NIE F P. Large Graph Hashing with Spectral Rotation[CP/OL]. (2017)[2019-12-3]. http://www.escience.cn/people/fpnie/index.html.
[1] 谢国波, 林立, 林志毅, 贺笛轩, 文刚. 基于YOLOv4-MP的绝缘子爆裂缺陷检测方法[J]. 广东工业大学学报, 2023, 40(02): 15-21.
[2] 陈靖宇, 吕毅. 基于脉冲神经网络的冷链制冷机结霜检测方法[J]. 广东工业大学学报, 2023, 40(01): 29-38.
[3] 叶文权, 李斯, 凌捷. 基于多级残差U-Net的稀疏SPECT图像重建[J]. 广东工业大学学报, 2023, 40(01): 61-67.
[4] 邹恒, 高军礼, 张树文, 宋海涛. 围棋机器人落子指引装置的设计与实现[J]. 广东工业大学学报, 2023, 40(01): 77-82,91.
[5] 谢光强, 许浩然, 李杨, 陈广福. 基于多智能体强化学习的社交网络舆情增强一致性方法[J]. 广东工业大学学报, 2022, 39(06): 36-43.
[6] 刘信宏, 苏成悦, 陈静, 徐胜, 罗文骏, 李艺洪, 刘拔. 高分辨率桥梁裂缝图像实时检测[J]. 广东工业大学学报, 2022, 39(06): 73-79.
[7] 熊武, 刘义. 粒子滤波算法在BDS高铁铁轨静态形变监测中的应用研究[J]. 广东工业大学学报, 2022, 39(04): 66-72.
[8] 易闽琦, 刘洪伟, 高鸿铭. 电商平台产品共同购买网络的影响因素研究[J]. 广东工业大学学报, 2022, 39(03): 16-24.
[9] 丘展春, 费伦科, 滕少华, 张巍. 余弦相似度保持的掌纹识别算法[J]. 广东工业大学学报, 2022, 39(03): 55-62.
[10] 郑佳碧, 杨振国, 刘文印. 基于细粒度混杂平衡的营销效果评估方法[J]. 广东工业大学学报, 2022, 39(02): 55-61.
[11] Gary Yen, 栗波, 谢胜利. 地球流体动力学模型恢复的长短期记忆网络渐进优化方法[J]. 广东工业大学学报, 2021, 38(06): 1-8.
[12] 李光程, 赵庆林, 谢侃. 去中心化的数据处理方案设计[J]. 广东工业大学学报, 2021, 38(06): 77-83.
[13] 谢光强, 赵俊伟, 李杨, 许浩然. 基于多集群系统的车辆协同换道控制[J]. 广东工业大学学报, 2021, 38(05): 1-9.
[14] 张巍, 张圳彬. 联合图嵌入与特征加权的无监督特征选择[J]. 广东工业大学学报, 2021, 38(05): 16-23.
[15] 邓杰航, 袁仲鸣, 林好润, 顾国生. 协同超像素和视觉显著性的图像质量评价[J]. 广东工业大学学报, 2021, 38(05): 33-39.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!