广东工业大学学报 ›› 2022, Vol. 39 ›› Issue (04): 83-90,97.doi: 10.12052/gdutxb.220006
戴美玲1, 程成1, 吴智文1, 卢镇伟1, 卢杰迅1, 杨坚1, 杨福俊2
Dai Mei-ling1, Cheng Cheng1, Wu Zhi-wen1, Lu Zhen-wei1, Lu Jie-xun1, Yang Jian1, Yang Fu-jun2
摘要: 空心球材料具有超轻、高比强度、缓冲性能好等优点,在航空航天、汽车安全等领域具有诸多需求,其力学性能主要受微观结构的影响。利用实验和有限元数值模拟研究3D打印开孔空心球结构的准静态压缩力学行为,主要分析胞元个数、开孔孔径以及空心球排列方式对两种连接方式空心球结构力学性能的影响。研究结果证实,开孔空心球结构的准静态压溃过程主要分为弹性变形阶段、塑性大变形阶段以及密实化阶段;当试件中胞元个数达到3×3×3以上时,其力学性能基本与胞元个数无关;总体上,有连接颈结构的比模量和比强度高于无连接颈结构,而无连接颈结构的比吸能高于有连接颈结构;面心立方排列结构的压缩力学性能优越,其次是体心立方排列结构,简单立方排列结构力学性能最弱;简单立方和体心立方结构的比模量、比强度以及比吸能与孔径之间是线性关系,而对于面心立方结构是非线性关系。为3D打印空心球材料的设计与应用提供一定参考。
中图分类号:
[1] ZHU J, ZHOU H, WANG C, et al. A review of topology optimization for additive manufacturing: Status and challenges [J]. Chinese Journal of Aeronautics, 2020, 34: 91-110. [2] ANDREAS ÖCHSNER. Multifunctional metallic hollow sphere structures: manufacturing, properties and application[M]. Springer Science & Business Media, Berlin, 2009, 2-29. [3] 余为. 金属空心球材料组元力学性能及结构设计[D]. 秦皇岛: 燕山大学, 2011: 48-67. [4] LIU Y, WU H, ZHANG X, et al. The influence of lattice structure on the dynamic performance of metal hollow sphere agglomerates [J]. Mechanics Research Communications, 2011, 38(8): 569-573. [5] SANDERS W S, GIBSON L J. Mechanics of BCC and FCC hollow-sphere foams [J]. Materials Science and Engineering:A, 2003, 352(1-2): 150-161. [6] SANDERS W S, GIBSON L J. Mechanics of hollow sphere foams [J]. Materials Science and Engineering:A, 2003, 347(1-2): 70-85. [7] FIEDLER T, ÖCHSNER A. On the anisotropy of adhesively bonded metallic hollow sphere structures [J]. Scripta Materialia, 2008, 58(8): 695-698. [8] FIEDLER T, VEYHL C, BELOVA I V, et al. Mechanical properties and micro-deformation of sintered metallic hollow sphere structure [J]. Computational Materials Science, 2013, 74(6): 143-147. [9] AMANI Y, ÖCHSNER A. Finite element simulation of arrays of hollow sphere structures [J]. Materialwissenschaft Und Werkstofftechnik, 2015, 46(4-5): 462-476. [10] SHUFRIN I, PASTERNAK E, DYSKIN A V. Negative Poisson's ratio in hollow sphere materials [J]. International Journal of Solids & Structures, 2015, 54: 192-214. [11] SONG J, SUN Q, YANG Z, et al. Effects of microporosity on the elasticity and yielding of thin-walled metallic hollow spheres [J]. Materials Science & Engineering:A, 2017, 688: 134-145. [12] GAO Z Y, YU T X, ZHAO H. Mechanical behavior of metallic hollow sphere materials: experimental study [J]. Journal of Aerospace Engineering, 2008, 21(4): 206-216. [13] GAO Z Y, YU T X, KARAGIOZOVA D. Finite element simulations on the mechanical properties of MHS materials [J]. Acta Mechanica Sinica, 2007, 23(1): 65-75. [14] RUAN H H, GAO Z Y, YU T X. Crushing of thin-walled spheres and sphere arrays [J]. International Journal of Mechanical Sciences, 2006, 48: 117-133. [15] DONG X L, GAO Z Y, YU T X. Dynamic crushing of thin-walled spheres: an experimental study [J]. International Journal of Impact Engineering, 2008, 35(8): 717-726. [16] 吴承伟, 张鹏程, 周平. 薄壁球壳超轻质结构力学行为研究[J]. 大连理工大学学报, 2008, 48(5): 625-630. WU C W, ZHANG P C, ZHOU P. Research on mechanical behavior of super-lightweight structure made of thin-walled spheres [J]. Journal of Dalian University of Technology, 2008, 48(5): 625-630. [17] 杨姝, 刘国平, 亓昌, 等. 金属空心球梯度泡沫结构抗冲击特性仿真与优化[J]. 浙江大学学报(工学版), 2016, 50(8): 1593-1599. YANG S, LIU G P, QI C, et al. Simulation and optimization for anti-shock performances of graded metal hollow sphere foam structure [J]. Journal of Zhejiang University (Engineering Science), 2016, 50(8): 1593-1599. [18] DAI M, MA Y, YANG F, et al. Experimental and numerical studies on compressive mechanical properties of hollow-sphere structures with perforations [J]. Mechanics of Materials, 2019, 134: 193-203. [19] ALI N B, KHLIF M, HAMMAMI D, et al. Mechanical and morphological characterization of spherical cell porous structures manufactured using FDM process [J]. Engineering Fracture Mechanics, 2019, 216: 106527. [20] 吴少杰. 球壳胞元轻质多孔材料力学性能的多参数影响分析[D]. 秦皇岛: 燕山大学, 2019: 36-48. [21] DAI M, JIANG H, DAI X, et al. Investigations of the compressive mechanical properties of open-cell hollow-sphere structures [J]. Mechanics of Materials, 2020, 148: 103517. [22] 唐超兰, 张伟祥, 陈志茹, 等. 3D打印用钛合金粉末制备技术分析[J]. 广东工业大学学报, 2019, 140(3): 91-98. TANG C L, ZHANG W X, CHEN Z R, et al. Analysis of preparation technology of titanium alloy powder for 3D printing [J] Journal of Guangdong University of Technology, 2019, 140 (3): 91-98. [23] ASTM International. Standard test method for tensile properties of plastics: ASTM D638-10[S]. West Conshohocken, MI, US: ASTM International, 2010: 1-17. [24] 夏元明, 张威, 崔天宁, 等. 金属多级类蜂窝的压溃行为研究[J]. 力学学报, 2019, 51(3): 873-883. XIA Y M, ZHANG W, CUI T N, et al. Study on the crushing behavior of multi-level honeycomb [J]. Acta Mechanica Sinica, 2019, 51(3): 873-883. |
[1] | 刘效洲, 朱睿, 朱光羽. 天然气掺氢燃烧技术在旋流式燃气灶上的数值模拟研究[J]. 广东工业大学学报, 2023, 40(01): 113-121. |
[2] | 邹翀, 唐雄民, 陈伟正, 江天鸿, 方文睿. 脉冲电流源作用下大气压介质阻挡放电的特性分析[J]. 广东工业大学学报, 2022, 39(04): 36-45. |
[3] | 刘效洲, 朱光羽. 循环流化床锅炉风室内流动特性及优化研究[J]. 广东工业大学学报, 2022, 39(03): 116-124. |
[4] | 李宇航, 高振宇, 杨雪强, 刘攀. 静压钢板桩贯入阻力试验与数值仿真[J]. 广东工业大学学报, 2022, 39(01): 129-134. |
[5] | 罗钧午, 李冬梅, 梁帅, 王帅超, 肖曙红. 十字交叉型微通道内液滴形成的数值模拟研究[J]. 广东工业大学学报, 2020, 37(05): 68-74. |
[6] | 甘阳阳, 李志生. 空气幕对厨房内PM2.5控制效果的模拟与分析[J]. 广东工业大学学报, 2020, 37(03): 82-87. |
[7] | 刘陈霖, 郑三强, 韩晓卓. 具有Allee效应捕食-竞争系统的时空动态分析[J]. 广东工业大学学报, 2019, 36(06): 38-44. |
[8] | 禹智涛, 潘浩, 贺绍华. 预应力轴压比对节段拼装桥墩力学性能影响分析[J]. 广东工业大学学报, 2019, 36(04): 85-91. |
[9] | 吴成赫, 刘丽孺, 陈毅刚, 王璋元. 旋转集热板式太阳能烟囱性能研究[J]. 广东工业大学学报, 2018, 35(05): 70-74. |
[10] | 何理谦, 袁鸽成, 骆志捷, 郭海斌. 6005A-T6铝合金搅拌摩擦焊缝的自然时效效应[J]. 广东工业大学学报, 2017, 34(02): 54-57. |
[11] | 赵冰春, 汪新, 赖志平. 居住小区布局形式对热环境的影响[J]. 广东工业大学学报, 2016, 33(06): 91-95. |
[12] | 王长宏, 黄炯桐, 曾文强. 高熔点钢板电阻点焊电极传热特性数值模拟与分析[J]. 广东工业大学学报, 2016, 33(03): 6-10. |
[13] | 刘勇健, 刘意美, 陈创鑫, 王颖, 罗启洋, 林辉. 软土深基坑围护结构水平变形特性研究[J]. 广东工业大学学报, 2016, 33(01): 89-94. |
[14] | 杨艺. 海水太阳池非稳态热质传递有限容积法模型[J]. 广东工业大学学报, 2015, 32(2): 120-125. |
[15] | 赖志平, 汪新. 某会展中心建筑表面风压分布的数值模拟[J]. 广东工业大学学报, 2014, 31(2): 78-84. |
|