Journal of Guangdong University of Technology ›› 2019, Vol. 36 ›› Issue (06): 66-73.doi: 10.12052/gdutxb.190034

• Comprehensive Studies • Previous Articles     Next Articles

A Household Electricity Load Optimal Control Strategy Based on Local Particle Swarm Optimization

Wu Dan-qi1, Lai Chun Sing1,2, Yang Jun-hua1, Li Xue-cong1, Lai Loi Lei1, Xiong Feng-jun1   

  1. 1. School of Automation, Guangdong University of Technology, Guangzhou 510006, China;
    2. Faculty of Engineering, The University of Leeds, Leeds LS2 9JT, UK
  • Received:2019-03-11 Online:2019-11-28 Published:2019-11-01

Abstract: In order to optimize the household electricity load, an optimal control strategy is proposed for household electricity consumption to minimize the total electricity charges under the time-of-use electricity pricing policy. Local Particle Swarm Optimization (LPSO) algorithm is used to minimize the electricity charges of four kinds of household electricity loads, and then compared with no-optimization treatment and traditional Particle Swarm Optimization (PSO) respectively. Using Python software, the mathematical model is built and simulated tests are carried out. The simulation results show that LPSO can significantly reduce the total electricity charges and has the advantages of strong global search ability and fast convergence speed, which can be applied to relevant researches in the field of household energy management.

Key words: household energy management, time-of-use pricing, simulation experiment, local particle swarm optimization

CLC Number: 

  • TM73
[1] DU P, LU N. Appliance commitment for household load scheduling[J]. IEEE Transactions on Smart Grid, 2011, 2(2):411-419
[2] PIPATTANASOMPORN M, KUZLU M, RAHMAN S. An algorithm for intelligent home energy management and demand response analysis[J]. IEEE Transactions on Smart Grid, 2012, 3(4):2166-2173
[3] KISHORE S, SNYDER L V. Control mechanisms for residential electricity demand in smart grids[C]. First IEEE International Conference on Smart Grid Communications, 2010:443-448.
[4] THOMAS A G, JAHANGIRI P, WU D, et al. Intelligent residential air-conditioning system with smart-grid functionality[J]. IEEE Transactions on Smart Grid, 2012, 3(4):2240-2251
[5] 张延宇, 曾鹏, 李忠文, 等. 智能电网环境下空调系统多目标优化控制算法[J]. 电网技术, 2014, 38(7):1819-1826 ZHANG Y Y, ZENG P, LI Z W, et al. A multi-objective optimal control algorithm for air conditioning system in smart grid[J]. Power System Technology, 2014, 38(7):1819-1826
[6] GOTTWALT S, KETTER W, BLOCK C, et al. Demand side management-a simulation of household behavior under variable prices[J]. Energy Policy, 2011, 39(12):8163-8174
[7] EROL-KANTARCI M, MOUFTAH H T. Wireless sensor networks for cost-efficient residential energy management in the smart grid[J]. IEEE Transactions on Smart Grid, 2011, 2(2):314-325
[8] 刘振亚. 建设坚强智能电网支撑又好又快发展[J]. 电网与清洁能源, 2009, 25(9):1-3 LIU Z Y. Build strong smart grid as pillar of sound and rapid development[J]. Power System and Clean Energy, 2009, 25(9):1-3
[9] 王守相, 孙智卿, 刘喆. 面向智能用电的家庭能量协同调度策略[J]. 电力系统自动化, 2015(17):108-113 WANG S X, SUN Z Q, LIU Z. Co-scheduling strategy of home energy for smart power utilization[J]. Automation of Eclectic Power Systems, 2015(17):108-113
[10] 孙超. 独立运行的光伏系统的研究[D]. 南京:南京航空航天大学, 2009.
[11] 牟黎. 电网友好型智能负荷中心的研究[D]. 北京:北京交通大学, 2013. MOU L. Research on grid friendly smart load center[D]. Beijing:Beijing Jiaotong University, 2013.
[12] 回海滨, 孔祥鹤. 低碳经济下的智能用电技术与环境安全[J]. 中国环境管理干部学院学报, 2011, 2(21):37-38 HUI H B, KONG X H. Intelligent power consumption technology and environmental safety in low-carbon economy[J]. Journal of EMCC, 2011, 2(21):37-38
[13] 姜力, 刘宏, 蔡鹤皋. 多维力/力矩传感器静态解耦的研究[J]. 仪器仪表学报, 2004, 25(3):284-287 JIANG L, LIU H, CAI H G. Nonlinear static decoupling of multi-axis force/torque sensor[J]. Chinese Journal of Scientific instrument, 2004, 25(3):284-287
[14] 吴伟坡. 基于实时电价的智能家庭能源优化控制[D]. 上海:上海交通大学, 2013.
[15] LU N. An evaluation of the load potential for providing load balancing service[J]. IEEE Transactions on Smart Grid, 2012, 3(3):1263-1270
[16] HUBERT T, GRIJALVA S. Modeling for residential electricity optimization in dynamic pricing environments[J]. IEEE Transactions on Smart Grid, 2012, 3(3):2224-2231
[17] 王继东, 杨羽昊, 周越, 等. 家庭智能用电系统建模及优化策略分析[J]. 电力系统及其自动化学报, 2014, 26(11):63-71 WANG J D, YANG Y H, ZHOU Y, et al. Model and optimization strategy for smart home power consumption system[J]. Proceedings of the CSU-EPSA, 2014, 26(11):63-71
[18] 尹忠东, 林挚, 李德智, 等. 基于混合型粒子群算法的智能家庭能量管理策略[J]. 华北电力大学学报, 2018, 45(4):25-33 YIN Z D, LIN Z, LI D Z, et al. Home energy management based on hybrid particle swarm optimization[J]. Journal of North China Electric Power University, 2018, 45(4):25-33
[1] Fu Zheng-xin, Liu Shuang, Duan Yi-qiang, Zhu Wei-dong. A Coordinated Framework for Power Demand Response Resources Participating in Gas Market [J]. Journal of Guangdong University of Technology, 2023, 40(02): 64-73.
[2] Chen You-peng, Chen Jing-hua. A Short-term Load Forecasting Method Based on Support Vector Machine with Whale Optimization Parameters [J]. Journal of Guangdong University of Technology, 2020, 37(03): 75-81.
[3] Tang Jun-jie, Chen Jing-hua, Qiu Ming-jin. Multi-objective Dispatch of Microgrid Based on Dynamic Fuzzy Chaotic Particle Swarm Algorithm [J]. Journal of Guangdong University of Technology, 2018, 35(03): 100-106.
[4] Ma Liu-yang, Meng An-bo, Yin Hao. Unit Commitment Optimization Based on Hybrid Crisscross Optimization Algorithm [J]. Journal of Guangdong University of Technology, 2017, 34(06): 68-72,77.
[5] Chen Jing-hua, Ding Lin-jun, Guo Zhuang-zhi, Liang Li-li, Li Jin-bei. Unit Commitment Considering Large-scale Integration of Electric Vehicles [J]. Journal of Guangdong University of Technology, 2017, 34(02): 63-68.
[6] Chen Jing-hua, Liang Li-li, Ding Lin-jun, Zhou Jun, Liu Guo-xiang. Unit Commitment Optimization Based on Chance-constrained Programming in Wind Power Integrated System [J]. Journal of Guangdong University of Technology, 2017, 34(01): 50-54,64.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!