Journal of Guangdong University of Technology ›› 2020, Vol. 37 ›› Issue (03): 23-35.doi: 10.12052/gdutxb.190123
Previous Articles Next Articles
Fei Lun-ke, Qin Jian-yang, Teng Shao-hua, Zhang Wei, Liu Dong-ning, Hou Yan
CLC Number:
[1] RUI Y, HUANG T S, CHANG S F. Image retrieval: current techniques, promising directions, and open issues [J]. Journal of Visual Communication and Image Representation, 1999, 10(1): 39-62 [2] HAR-PELED S, INDYK P, MOTWANI R. Approximate nearest neighbor: towards removing the curse of dimensionality [J]. Theory of Computing, 2012, 8(14): 321-350 [3] WEBER R, SCHEK H J, BLOTT S. A quantitative analysis and performance study for similarity- search methods in high-dimensional spaces[C]// International Conference on Very Large Data Bases. San Francisco: VLDB, 1998: 194-205. [4] FRIEDMAN J H, BENTLEY J L, FINKEL R A. An algorithm for finding best matches in logarithmic expected time [J]. ACM Transactions on Mathematical Software, 1977, 3(3): 209-226 [5] UHLMANN J K. Satisfying general proximity / similarity queries with metric trees [J]. Information Processing Letters, 1991, 40(4): 175-179 [6] 蒋凯, 武港山. 基于Web的信息检索技术综述[J]. 计算机工程, 2005, 31(24): 7-9 JIANG K, WU G S. Overview of information retrieval technology for Web [J]. Computer Engineering, 2005, 31(24): 7-9 [7] JÉGOU H, DOUZE M, SCHMID C. Product quantization for nearest neighbor search [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 33(1): 117-128 [8] KULIS B, DARRELL T. Learning to hash with binary reconstructive embeddings[C]// Advances in Neural Information Processing Systems. Vancouver: NIPS, 2009: 1042-1050 [9] LIU W, WANG J, JI R R, et al. Supervised hashing with kernels[C]// Computer Vision & Pattern Recognition. Providence: IEEE, 2012: 2074-2081. [10] WANG J, KUMAR S, CHANG S F. Sequential projection learning for hashing with compact codes[C]// International Conference on International Conference on Machine Learning. Haifa: ICML, 2010: 1127-1134. [11] XU B, BU J, LIN Y, et al. Harmonious hashing[C]// International Joint Conference on Artificial Intelligence. Beijing: IJCAI, 2014: 1820-1826. [12] HE J, LIU W, CHANG S F. Scalable similarity search with optimized kernel hashing[C]// International Conference on Knowledge Discovery & Data Mining. Boston: ACM SIGKDD, 2010: 1129-1138. [13] WEISS Y, TORRALBA A, FERGUS R. Spectral hashing[C]// Advances in Neural Information Processing Systems. Vancouver: NIPS, 2009: 1753–1760. [14] CARREIRA P M. The elastic embedding algorithm for dimensionality reduction[C]// International Conference on Machine Learning. Haifa: ICML, 2010: 167-174. [15] SHAKHNAROVICH G, VIOLA P, DARRELL T. Fast pose estimation with parameter-sensitive hashing[C]// International Conference on Computer Vision. Nice: IEEE, 2003: 750. [16] GONG Y, LAZEBNIK S, GORDO A, et al. Iterative quantization: a procrustean approach to learning binary codes for large-scale image retrieval [J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2013, 35(12): 2916-2929 [17] WOLD S, ESBENSEN K, GELADI P. Principal component analysis [J]. Chemometrics & Intelligent Laboratory Systems, 1987, 2(1): 37-52 [18] LIU W, MU C, KUMAR S, et al. Discrete graph hashing[C]// Advances in Neural Information Processing Systems. Montreal: NIPS, 2014: 3419-3427. [19] LIU W, WANG J, KUMAR S, et al. Hashing with graphs[C]// International Conference on Machine Learning. Bellevue: ICML, 2011: 1-8. [20] ZHU X, HUANG Z, CHENG H, et al. Sparse hashing for fast multimedia search [J]. ACM Transactions on Information Systems, 2013, 31(2): 1-24 [21] HARDOON D R, SZEDMAK S, SHAWE T J. Canonical correlation analysis: an overview with application to learning methods [J]. Neural Computation, 2004, 16(12): 2639-2664 [22] GIONIS A, INDYK P, MOTWANI R. Similarity search in high dimensions via hashing[C]// International Conference on Very Large Data Bases. San Francisco: Morgan Kaufmann Publishers, 1999: 518-529. [23] DATAR M, IMMORLICA N, INDYK P, et al. Locality-sensitive hashing scheme based on p-stable distributions[C]// Symposium on Computational Geometry. Brooklyn: SCG, 2004: 253-262. [24] KULIS B, GRAUMAN K. Kernelized locality-sensitive hashing for scalable image search[C]// International Conference on Computer Vision. Kyoto: IEEE, 2009: 2130- 2137. [25] 林悦. 基于哈希算法的高维数据的最近邻检索[D]. 杭州: 浙江大学, 2013. [26] 苏毅娟, 余浩, 雷聪, 等. 基于PCA的哈希图像检索算法[J]. 计算机应用研究, 2018, 35(10): 3147-3150 SU Y J, YU H, LEI C, et al. PCA hashing for image data retrieval [J]. Application Research of Computers, 2018, 35(10): 3147-3150 [27] BODÓ Z, CSATÓ L. Linear spectral hashing [J]. Neurocomputing, 2014, 141: 117-123 [28] 夏立超, 蒋建国, 齐美彬. 基于改进谱哈希的大规模图像检索[J]. 合肥工业大学学报(自然科学版), 2016, 39(8): 1049-1054 XIA L C, JIANG J G, QI M B. A large-scale image retrieval method based on improved spectral hashing [J]. Journal of Hefei University of Technology (Natural Science), 2016, 39(8): 1049-1054 [29] KIM S, CHOI S. Multi-view anchor graph hashing[C]// International Conference on Acoustics, Speech and Signal Processing. Vancouver: IEEE, 2013: 3123-3127. [30] 吕成钢. 面向大规模图片搜索的基于锚图哈希的半监督度量学习算法[D]. 南京: 南京邮电大学, 2018. [31] TAKEBE H, UEHARA Y, UCHIDA S. Efficient anchor graph hashing with data-dependent anchor selection [J]. IEICE Transactions on Information and Systems, 2015, E98-(11): 2030-2033 [32] 赵珊, 李永思. 基于随机旋转局部保持哈希的图像检索技术[J]. 工程科学与技术, 2019, 51(2): 144-150 ZHAO S, LI Y S. Image retrieval based on random rotation locality preserving hashing [J]. Advanced Engineering Sciences, 2019, 51(2): 144-150 [33] CARREIRA P M A, RAZIPERCHIKOLAEI R. Hashing with binary autoencoders[C]// Computer Vision & Pattern Recognition. Boston: IEEE, 2015: 557-566. [34] KONG W, LI W J. Isotropic hashing[C]// International Conference on Neural Information Processing Systems. Vancouver: NIPS, 2012: 1646-1654. [35] XIA Y, HE K, KOHLI P, et al. Sparse projections for high-dimensional binary codes[C]// Computer Vision & Pattern Recognition. Boston: IEEE, 2015: 3332-3339. [36] 徐盼盼. 基于哈希学习的图像检索方法研究[D].沈阳: 沈阳工业大学, 2019. [37] ZHENG M, BU J, CHEN C, et al. Graph regularized sparse coding for image representation [J]. IEEE Transactions on Image Processing, 2011, 20(5): 1327-1336 [38] DING G, ZHOU J, GUO Y, et al. Large-scale image retrieval with sparse embedded hashing [J]. Neurocomputing, 2017, 257: 24-36 [39] LAI Z H, CHEN Y D, WU J, et al. Jointly sparse hashing for image retrieval [J]. IEEE Transactions on Image Processing, 2018, 27(12): 6147-6158 [40] HU M, YANG Y, SHEN F M, et al. Hashing with angular reconstructive embeddings [J]. IEEE Transactions on Image Processing, 2018, 27(2): 545-555 [41] HU D, NIE F P, LI X L. Discrete spectral hashing for efficient similarity retrieval [J]. IEEE Transactions on Image Processing, 2019, 28(3): 1080-1091 [42] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition [J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324 [43] LECUN Y, BOTTOU L, BENGIO Y, et al. MNIST database[DB/OL]. (1998)[2019-12-3]. http://yann.lecun.com/exdb/mnist/. [44] KRIZHEVSKY A, HINTON G. Learning multiple layers of features from tiny images[R].[S.l.: s.n.], 2009. [45] KRIZHEVSKY A, HINTON G. CIFAR-10 database[DB/OL].(2009)[2019-12-3]. http://www.cs.toronto.edu/~kriz/cifar.html. [46] KINNUNEN T, KAMARAINEN J, LENSU L, et al. Making visual object categorization more challenging: randomized Caltech-101 data set[C]// International Conference on Pattern Recognition. Istanbul: IEEE, 2010: 476- 479. [47] KINNUNEN T, KAMARAINEN J, LENSU L, et al. Cal-tech-101 database[DB/OL]. (2010)[2019-12-3]. http://www.vision.caltech.edu/Image_Datasets/Caltech101/. [48] XIAO J, HAYS J, EHINGER K A, et al. SUN database: large-scale scene recognition from abbey to zoo[C]// Computer Vision & Pattern Recognition. San Francisco: IEEE, 2010: 3485-3492. [49] XIAO J, HAYS J, EHINGER K A, et al. SUN397 database[DB/OL]. (2010)[2019-12-3]. https://vision.princeton.edu/projects/2010/SUN/. [50] WOLF L, HASSNER T, MAOZ I. Face recognition in unconstrained videos with matched background similarity[C]// Computer Vision & Pattern Recognition. Colorado: IEEE, 2011: 529-534. [51] WOLF L, HASSNER T, MAOZ I. YoutubeFaces database[DB/OL]. (2011)[2019-12-3]. http://www.cs.tau.ac.il/~wolf/ytfaces/index.html. [52] CHUA T S, TANG J, HONG R, et al. NUS-WIDE: a real-world web image database from National University of Singapore[C]// International Conference on Image & Video Retrieval. Santorini: CIVR, 2009: 48. [53] CHUA T S, TANG J, HONG R, et al. NUS-WIDE database[DB/OL]. (2009)[2019-12-3]. https://lms.comp.nus.edu.sg/wp-content/uploads/2019/research/nuswide/NUS-WIDE.html. [54] TORRALBA A, MURPHY K P, FREEMAN W T, et al. Context-based vision system for place and object recognition[C]// International Conference on Computer Vision. Nice: IEEE, 2008: 273-280. [55] LOWE D G. Object recognition from local scale-invariant features[C]// International Conference on Computer Vision. Kerkyra: IEEE, 1999: 1150-1157. [56] GONG Y, WANG L, GUO R, et al. Multi-scale orderless pooling of deep convolutional activation features[C]// European Conference on Computer Vision. Zurich: ECCV, 2014: 392-407. [57] OJALA T, PIETIKAINEN M, MAENPAA T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971-987 [58] WEISS Y, TORRALBA A, FERGUS R. Spectral Hash-ing[CP/OL]. (2009)[2019-12-3]. https://www.cse.huji.ac.il/~yweiss/SpectralHashing/. [59] LIU W, WANG J, KUMAR S, et al. Anchor Graph Hashing[CP/OL].(2011)[2019-12-3]. http://www.ee.columbia.edu/~wliu/. [60] GONG Y, LAZEBNIK S, GORDO A, et al. Iterative Quantization[CP/OL].(2013)[2019-12-3]. http://slazebni.cs.illinois.edu/publications.html. [61] LAI Z H, CHEN Y D, WU J, et al. Jointly Sparse Hashing[CP/OL]. (2018)[2019-12-3]. http://www.scholat.com/laizhihui. [62] LI X, HU D, NIE F P. Large graph hashing with spectral rotation[C]//Thirty-First AAAI Conference on Artificial Intelligence. San Francisco: AAAI, 2017: 2203-2209. [63] LI X, HU D, NIE F P. Large Graph Hashing with Spectral Rotation[CP/OL]. (2017)[2019-12-3]. http://www.escience.cn/people/fpnie/index.html. |
[1] | Xie Guo-bo, Lin Li, Lin Zhi-yi, He Di-xuan, Wen Gang. An Insulator Burst Defect Detection Method Based on YOLOv4-MP [J]. Journal of Guangdong University of Technology, 2023, 40(02): 15-21. |
[2] | Chen Jing-yu, Lyu Yi. Frost Detection Method of Cold Chain Refrigerating Machine Based on Spiking Neural Network [J]. Journal of Guangdong University of Technology, 2023, 40(01): 29-38. |
[3] | Ye Wen-quan, Li Si, Ling Jie. Sparse-view SPECT Image Reconstruction Based on Multilevel-residual U-Net [J]. Journal of Guangdong University of Technology, 2023, 40(01): 61-67. |
[4] | Zou Heng, Gao Jun-li, Zhang Shu-wen, Song Hai-tao. Design and Implementation of a Dropping Guidance Device for Go Robot [J]. Journal of Guangdong University of Technology, 2023, 40(01): 77-82,91. |
[5] | Xie Guang-qiang, Xu Hao-ran, Li Yang, Chen Guang-fu. Consensus Opinion Enhancement in Social Network with Multi-agent Reinforcement Learning [J]. Journal of Guangdong University of Technology, 2022, 39(06): 36-43. |
[6] | Liu Xin-hong, Su Cheng-yue, Chen Jing, Xu Sheng, Luo Wen-jun, Li Yi-hong, Liu Ba. Real Time Detection of High Resolution Bridge Crack Image [J]. Journal of Guangdong University of Technology, 2022, 39(06): 73-79. |
[7] | Xiong Wu, Liu Yi. Application of Particle Filter Algorithm in Static Deformation Monitoring of BDS High-Speed Rail [J]. Journal of Guangdong University of Technology, 2022, 39(04): 66-72. |
[8] | Yi Min-qi, Liu Hong-wei, Gao Hong-ming. Research on the Factors Influencing the Co-purchase Network of Products on E-commerce Platforms [J]. Journal of Guangdong University of Technology, 2022, 39(03): 16-24. |
[9] | Qiu Zhan-chun, Fei Lun-ke, Teng Shao-hua, Zhang Wei. Palmprint Recognition Based on Cosine Similarity [J]. Journal of Guangdong University of Technology, 2022, 39(03): 55-62. |
[10] | Zheng Jia-bi, Yang Zhen-guo, Liu Wen-yin. Marketing-Effect Estimation Based on Fine-grained Confounder Balancing [J]. Journal of Guangdong University of Technology, 2022, 39(02): 55-61. |
[11] | Gary Yen, Li Bo, Xie Sheng-li. An Evolutionary Optimization of LSTM for Model Recovery of Geophysical Fluid Dynamics [J]. Journal of Guangdong University of Technology, 2021, 38(06): 1-8. |
[12] | Li Guang-cheng, Zhao Qing-lin, Xie Kan. A Design of Decentralized Data Processing Scheme [J]. Journal of Guangdong University of Technology, 2021, 38(06): 77-83. |
[13] | Xie Guang-qiang, Zhao Jun-wei, Li Yang, Xu Hao-ran. Cooperative Lane-changing Based on Multi-cluster System [J]. Journal of Guangdong University of Technology, 2021, 38(05): 1-9. |
[14] | Zhang Wei, Zhang Zhen-bin. Joint Graph Embedding and Feature Weighting for Unsupervised Feature Selection [J]. Journal of Guangdong University of Technology, 2021, 38(05): 16-23. |
[15] | Deng Jie-hang, Yuan Zhong-ming, Lin Hao-run, Gu Guo-sheng. Superpixel and Visual Saliency Synergetic Image Quality Assessment [J]. Journal of Guangdong University of Technology, 2021, 38(05): 33-39. |
|