Journal of Guangdong University of Technology ›› 2024, Vol. 41 ›› Issue (02): 1-10.doi: 10.12052/gdutxb.230090
• Feature Article • Next Articles
Li Qing-hui1, Pan Xiao-chun1, Zuo Xiao-bo1, Wang Dai-yao2,3, Zhao Zhi-wei2,4, Liang Jia-liang2
CLC Number:
[1] AYYAGARI V, HWANG Y, KIM J. Design and development of potassium formate based atmospheric water harvester [J]. Energy, 2021, 221: 119726. [2] YUAN Y, ZHANG H, YANG F, et al. Inorganic composite sorbents for water vapor sorption: a research progress [J]. Renewable and Sustainable Energy Reviews, 2016, 54: 761-776. [3] MENACHEM, ELIMELECH, WILLIAM, et al. The future of seawater desalination: energy, technology, and the environment[J]. Science, 2011. [4] HANIKEL N, PREVOT M S, YAGHI O M. MOF water harvesters [J]. Nature Nanotechnology, 2020, 15(5): 348-355. [5] KLEMM O, SCHEMENAUER R S, LUMMERICH A, et al. Fog as a fresh-water resource: overview and perspectives [J]. Ambio, 2012, 41(3): 221-234. [6] AGAM N, BERLINER P R. Dew formation and water vapor adsorption in semi-arid environments-a review [J]. Journal of Arid Environments, 2006, 65(4): 572-590. [7] FURUKAWA H, GANDARA F, ZHANG Y B, et al. Water adsorption in porous metal-organic frameworks and related materials. [J]. Journal of the American Chemical Society, 2014, 136(11): 4369. [8] 王雯雯, 葛天舒, 代彦军, 等. 太阳能吸附式空气取水研究现状[J]. 太阳能, 2020(1): 33-46. WANG W W, GE T S, DAI Y J, et al. Status of solar-driven sorption-based atmosphere water harvesting [J]. Solar Energy, 2020(1): 33-46. [9] LORD J, THOMAS A, TREAT N, et al. Global potential for harvesting drinking water from air using solar energy [J]. Nature, 2021, 598(7882): 611-617. [10] 王胜楠, 陈康, 郑旭. 吸附式空气取水系统用吸湿材料研究进展[J]. 化工进展, 2022, 41(7): 3636-3647. WANG S N, CHEN K, ZHENG X. Recent progress of moisture sorbent for adsorption-based atmospheric water harvesting [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3636-3647. [11] 郑旭. 小温差再生的干燥剂的优选及其在除湿换热器中的应用[D]. 上海: 上海交通大学, 2016. [12] LAPOTIN A, KIM H, RAO S R, et al. Adsorption-based atmospheric water harvesting: impact of material and component properties on system-level performance [J]. Accounts of Chemical Research, 2019(52): 1588-1597. [13] CAO Y, CHEN Y, SUN X, et al. Water sorption in ionic liquids: kinetics, mechanisms and hydrophilicity [J]. Physical Chemistry Chemical Physics, 2012, 14(35): 12252-12262. [14] BUTT H, GRAF K, KAPPL M. Physics and chemistry of interfaces[M]. 2nd. New York: John Wiley & Sons, Inc. , 2006. [15] LI R, SHI Y, ALSAEDI M, et al. Hybrid hydrogel with high water vapor harvesting capacity for deployable solar-driven atmospheric water generator [J]. Environmental Science & Technology, 2018, 52(19): 11367-11377. [16] LI R, SHI Y, WU M, et al. Improving atmospheric water production yield: enabling multiple water harvesting cycles with nano sorbent [J]. Nano Energy, 2020, 67: 104255. [17] LI R, SHI Y, SHI L, et al. Harvesting water from air: using anhydrous salt with sunlight [J]. Environmental Science & Technology, 2018, 52(9): 5398-5406. [18] XU J, LI T, CHAO J, et al. Efficient solar-driven water harvesting from arid air with metal-organic frameworks modified by hygroscopic salt [J]. Angewandte Chemie International Edition, 2020, 59(13): 5202-5210. [19] ZHOU X, LU H, ZHAO F, et al. Atmospheric water harvesting: a review of material and structural designs [J]. ACS Materials Letters, 2020, 2(7): 671-684. [20] SAHA B B, KOYAMA S, LEE J B, et al. Performance evaluation of a low-temperature waste heat driven multi-bed adsorption chiller [J]. International Journal of Multiphase Flow, 2003, 29(8): 1249-1263. [21] OLIVIER J P. Modeling physical adsorption on porous and non porous solids using density functional theory [J]. Journal of Porous Materials, 1995, 2(1): 9-17. [22] KUZNETSOVA A, YATES J T, LIU J, et al. Physical adsorption of xenon in open single walled carbon nanotubes: observation of a quasi-one-dimensional confined Xe phase[J]. The Journal of Chemical Physics, 2000, 112(21): 9590-9598. [23] SRIVASTAVA N C, EAMES I W. A review of adsorbents and adsorbates in solid-vapour adsorption heat pump systems [J]. Applied Thermal Engnineering, 1998, 18(9-10): 707-714. [24] KATO Y, YAMADA M, KANIE T, et al. Calcium oxide/carbon dioxide reactivity in a packed bed reactor of a chemical heat pump for high-temperature gas reactors [J]. Nuclear Engineering & Design, 2001, 210(1-3): 1-8. [25] CANIVET J, FATEEVA A, GUO Y, et al. Water adsorption in MOFs: fundamentals and applications [J]. Chemical Society Reviews, 2014, 43(16): 5594-5617. [26] 常烜宇, 李勇, 何海斌等. 硅胶及硅胶-氯化锂复合材料蓄能特性实验与分析[J]. 太阳能学报, 2017, 38(7): 1767-1772. CHANG X Y, LI Y, HE H B, et al. Investagation of the experiment on the energy storage characteristics of silica gel and silica gel-lithium chloride composite material [J]. Acta Energeia Solaris Sinica, 2017, 38(7): 1767-1772. [27] ARISTOV Y I. Selective water sorbents: a new family of materials for sorption cooling/heating: state-of-the art[C]//In Proceedings of V Minsk International Seminar on Heat Pipes, Heat Pumps, and Refrigerators, [s.l.: s.n.], 2003: 379-390. [28] FANG Y, ZHANG Z, DAYAN L I, et al. Adsorptive performance of metallic ion doped silica gel adsorbent [J]. Materials Review, 2009, 23(18): 11-14. [29] KANEKO K. Specific intermolecular structures of gases confined in carbon nanospace [J]. Carbon, 2000, 38(2): 287-303. [30] SPIRIDON M, HAUTA O R, Secula M S, et al. Preparation and characterization of some porous composite materials for water vapor adsorption [J]. Revista de Chimie, 2012, 63(7): 711-714. [31] ENTEZARI A, EJEIAN M, WANG R Z. Extraordinary air water harvesting performance with three phase sorption [J]. Materials Today Energy, 2019, 13: 362-373. [32] WILLIAM G E, MOHAMED M H, FATOUH M. Desiccant system for water production from humid air using solar energy [J]. Energy, 2015, 90: 1707-1720. [33] WANG X, LI X, LIU G, et al. An interfacial solar heating assisted liquid sorbent atmospheric water generator [J]. Angewandte Chemie International Edition, 2019, 58(35): 12054-12058. [34] KALMUTZKI M J, HANIKEL N, YAGHI O M. Secondary building units as the turning point in the development of the reticular chemistry of MOFs [J]. Science Advances, 2018, 4(10): t9180. [35] FURUKAWA H, Cordova E K, O'Keeffe M, et al. The chemistry and applications of metal-organic frameworks [J]. Science, 2013, 341(6149): 1230444. [36] KALMUTZKI M J, DIERCKS C S, YAGHI O M. Metal-organic frameworks for water harvesting from air [J]. Advanced Materials, 2018, 30(37): 1704304. [37] KIM H, YANG S, RAO S R, et al. Water harvesting from air with metal-organic frameworks powered by natural sunlight [J]. Science, 2017(356): 430-434. [38] HANIKEL N, PREVOT M S, FATHIEH F, et al. Rapid cycling and exceptional yield in a metal-organic framework water harvester [J]. ACS Central Science, 2019, 5(10): 1699-1706. [39] GORDEEVA L G, SOLOVYEVA M V, SAPIENZA A, et al. Potable water extraction from the atmosphere: potential of MOFs [J]. Renewable Energy, 2020, 148: 72-80. [40] ZHOU X, GUO Y, ZHAO F, et al. Hydrogels as an emerging material platform for solar water purification [J]. Accounts of Chemical Research, 2019, 52(11): 3244-3253. [41] ULLAH F, OTHMAN M B H, JAVED F, et al. Classification, processing and application of hydrogels: a review [J]. Materials Science and Engineering:C, 2015, 57: 414-433. [42] AHMED E M. Hydrogel: Preparation, characterization, and applications: a review [J]. Journal of Advanced Research, 2015, 6(2): 105-121. [43] KABIRI K, OMIDIAN H, ZOHURIAAN-MEHR M J, et al. Superabsorbent hydrogel composites and nanocomposites: a review [J]. Polymer Composites, 2011, 32(2): 277-289. [44] YANG K, PAN T, LEI Q, et al. A roadmap to sorption-based amospheric water harvesting: From molecular sorption mechanism to sorbent design and system optimization [J]. Environmental Science & Technology, 2021, 55(10): 6542-6560. [45] GUO Y, BAE J, FANG Z, et al. Hydrogels and hydrogel-derived materials for energy and water sustainability [J]. Chemical Reviews, 2020, 120(15): 7642-7707. [46] NANDAKUMAR D K, RAVI S K, ZHANG Y, et al. A super hygroscopic hydrogel for harnessing ambient humidity for energy conservation and harvesting[J]. Energy & Environmental Science, 2018. [47] YANG J, ZHANG X, QU H, et al. A moisture-hungry copper complex harvesting air moisture for potable water and autonomous urban agriculture [J]. Advanced Materials, 2020, 32(39): 2002936. [48] ZHANG X, YANG J, QU H, et al. Machine-learning-assisted autonomous humidity management system based on solar‐regenerated super hygroscopic complex[J]. Advanced Science, 2020: 2003939. [49] KALLENBERGER P A, FROBA M. Water harvesting from air with a hygroscopic salt in a hydrogel-derived matrix[J]. Communications Chemistry, 2018, 1(1) . [50] LI R, WU M, SHI Y, et al. Hybrid water vapor sorbent design with pollution shielding properties: extracting clean water from polluted bulk water sources [J]. Journal of Materials Chemistry A, 2021, 9(26): 14731-14740. [51] ENTEZARI A, EJEIAN M, WANG R. Super atmospheric water harvesting hydrogel with alginate chains modified with binary salts [J]. ACS Materials Letters, 2020, 2(5): 471-477. [52] NI F, XIAO P, QIU N, et al. Collective behaviors mediated multifunctional black sand aggregate towards environmentally adaptive solar-to-thermal purified water harvesting [J]. Nano Energy, 2020, 68: 104311. [53] KARMAKAR A, MILEO P G M, BOK I, et al. Thermo-responsive MOF/Polymer composites for temperature-mediated water capture and release [J]. Angewandte Chemie International Edition, 2020, 59(27): 11003-11009. [54] YILMAZ G, MENG F L, LU W, et al. Autonomous atmospheric water seeping MOF matrix [J]. Science Advances, 2020, 6(42): eabc8605. [55] YANG H, ZHU H, HENDRIX M M R M, et al. Temperature-triggered collection and release of water from fogs by a sponge-like cotton fabric [J]. Advanced Materials, 2013, 25(8): 1150-1154. [56] MATSUMOTO K, SAKIKAWA N, MIYATA T. Thermo-responsive gels that absorb moisture and ooze water [J]. Nature Communications, 2018, 9(1): 2315. [57] HE W, ZHOU L, WANG M, et al. Structure development of carbon-based solar-driven water evaporation systems [J]. Science Bulletin, 2021, 66(14): 1472-1483. [58] WANG M, SUN T, WAN D, et al. Solar-powered nanostructured biopolymer hygroscopic aerogels for atmospheric water harvesting [J]. Nano Energy, 2021, 80: 105569. [59] ZHANG X, YANG J, BORAYEK R, et al. Super-hygroscopic film for wearables with dual functions of expediting sweat evaporation and energy harvesting [J]. Nano Energy, 2020, 75: 104873. [60] NI F, QIU N, XIAO P, et al. Tillandsia-inspired hygroscopic photothermal organogels for efficient atmospheric water harvesting [J]. Angewandte Chemie International Edition, 2020, 59(43): 19237-19246. [61] WU M, LI R, SHI Y, et al. Metal- and halide-free, solid-state polymeric water vapor sorbents for efficient water-sorption-driven cooling and atmospheric water harvesting [J]. Materials horizons, 2021, 8(5): 1518-1527. [62] ZHAO F, ZHOU X, LIU Y, et al. Super moisture-absorbent gels for all-weather atmospheric water harvesting [J]. Advanced Materials, 2019, 31(10): 1806446. [63] YANG K, PAN T, PINNAU I, et al. Simultaneous generation of atmospheric water and electricity using a hygroscopic aerogel with fast sorption kinetics [J]. Nano Energy, 2020, 78: 105326. [64] YAO H, ZHANG P, HUANG Y, et al. Highly efficient clean water production from contaminated air with a wide humidity range [J]. Advanced Materials, 2019, 32(6): 1905875. [65] XU J, LI T, YAN T, et al. Ultrahigh solar-driven atmospheric water production enabled by scalable rapid-cycling water harvester with vertically aligned nanocomposite sorbent [J]. Energy & Environmental Science, 2021, 14: 5979-5994. [66] DENG F, WANG C, XIANG C, et al. Bioinspired topological design of super hygroscopic complex for cost-effective atmospheric water harvesting [J]. Nano Energy, 2021, 90: 106642. [67] TALAAT M A, AWAD M M, ZEIDAN E B, et al. Solar-powered portable apparatus for extracting water from air using desiccant solution [J]. Renewable Energy, 2018, 119: 662-674. [68] WANG J Y, WANG R Z, WANG L W, et al. A high efficient semi-open system for fresh water production from atmosphere [J]. Energy, 2017, 138: 542-551. [69] FATHIEH F, KALMUTZKI M J, KAPUSTIN E A, et al. Practical water production from desert air [J]. Science Advances, 2018, 4(6): eaat3198. [70] ZHAO Z, WANG D, GAN P, et al. Solar-driven atmospheric water harvesting with a super-hygroscopic composite modified activated carbon fiber for tropical island ecological farm [J]. Environmental Functional Materials, 2022, 1(3): 275-283. |
[1] | Zhong Jian-jiao, Luo Rong-chang. Crown Ether-based Hypercrosslinked Polymers for the Cycloaddition of CO2 with Epoxides [J]. Journal of Guangdong University of Technology, 2024, 41(02): 122-128. |
[2] | Yang Wen-jian, Lai Yang-yu, Yang Kui, Zu Dao-yuan, Zhang Yuan, Ma Jin-xing. Research Progress of Targeted Adsorption-transformation of Emerging Contaminants in Water [J]. Journal of Guangdong University of Technology, 2023, 40(06): 131-138. |
[3] | Lan Fang-fang, Li Xian-hui, Yang Yang. Seawater Uranium Extraction: Progress and Challenges [J]. Journal of Guangdong University of Technology, 2023, 40(06): 139-146. |
[4] | Wan Tao, Yuan Wen-xiong, Zhao Chen, Min Yong-gang. Research Progress of Two-dimensional Materials and Conducting Polymer Composites in Flexible Supercapacitors [J]. Journal of Guangdong University of Technology, 2023, 40(02): 74-81. |
[5] | Huang Jin-hua, Lu Sheng-guo. Porous Structure of Soybean and its Adsorption Characteristics on Neutral Red Dye and Heavy Metal Ions [J]. Journal of Guangdong University of Technology, 2022, 39(06): 107-113. |
[6] | Dai Mei-ling, Cheng Cheng, Wu Zhi-wen, Lu Zhen-wei, Lu Jie-xun, Yang Jian, Yang Fu-jun. Quasi-static Compressive Mechanical Behaviors of Perforated Hollow-Sphere Structures [J]. Journal of Guangdong University of Technology, 2022, 39(04): 83-90,97. |
[7] | Hao Yan-ping, Luo Tong, Lyu Gao-jin, Wang Chao, Zhou Hao, Yang Gui-hua, Chen Jia-chuan. Research Progress of Lignin-derived Biodegradable Composite Film Materials [J]. Journal of Guangdong University of Technology, 2022, 39(01): 21-33. |
[8] | Wen Wei-qiu, Guo Jian-wei. Synthesis of pH-Responsive Star-Shaped Polymeric Micelles for Controlled Drug Delivery [J]. Journal of Guangdong University of Technology, 2021, 38(01): 89-96. |
[9] | Jiang Yue, Chen Guan-sheng, Liu Liang-de, Liu Xiang-yun, Xiao Hong-xin, Luo Chao-hong. An Experimental Research of the Heat Absorption and Regeneration Performance of the Solar Powered Solution Regenerator [J]. Journal of Guangdong University of Technology, 2020, 37(04): 79-83. |
[10] | Xiong Xuan, Rong Feng-mei, Wen Yuan-mei. A Metasurface Broadband THz Absorber [J]. Journal of Guangdong University of Technology, 2019, 36(05): 20-24. |
[11] | Lu Zi-jian, Huang Jin, Hu Yan-xin, Wang Hai, Chen You-peng. Design and Experimental Study of Sliding Linear Fresnel Solar Collector [J]. Journal of Guangdong University of Technology, 2019, 36(05): 86-93. |
[12] | Yang Hui-yan, Guo Jian-wei. A Study of Star pH-Responsive Polymer and Its Self-Assembled Micelles [J]. Journal of Guangdong University of Technology, 2019, 36(01): 81-86. |
[13] | Zhang Yu-xuan, Huang Chun-dong, Tan Jian-bo. Synthesis of Polymer Nano-objects with Complex Morphologies via Polymerization-induced Self-assembly [J]. Journal of Guangdong University of Technology, 2018, 35(06): 100-106. |
[14] | Liu Dong-dong, Tan Jian-bo, Zhang Li. Preparation of All-acrylic Diblock Copolymer Nano-objects via Alcoholic Photoinitiated RAFT Dispersion Polymerization [J]. Journal of Guangdong University of Technology, 2018, 35(05): 80-85. |
[15] | Liu Sa, Zhong Chun-ting, Wang Wei-wei, Wang Yan-yan, Ren Li. A Study of Preparing Self-assembly Brush Polymer by Quartz Crystal Microbalance [J]. Journal of Guangdong University of Technology, 2018, 35(02): 1-5. |
|