Journal of Guangdong University of Technology ›› 2024, Vol. 41 ›› Issue (06): 60-68.doi: 10.12052/gdutxb.230156
• Computer Science and Technology • Previous Articles
Zeng An1, Pang Yao-xing1, Pan Dan2, Zhao Jing-liang1
CLC Number:
[1] 中国心血管健康与疾病报告2022概要[J]. 中国循环杂志, 2023, 38(6) : 583-612. [2] CHEN C, QIN C, QIU H Q, et al. Deep learning for cardiac image segmentation: a review [J]. Frontiers in Cardiovascular Medicine, 2020, 7: 25-43. [3] XIONG J J, PO L M, CHEUNG K W, et al. Edge-sensitive left ventricle segmentation using deep reinforcement learning [J]. Sensors, 2021, 21(7): 1-19. [4] ZHOU Z W, RAHMAN SIDDIQUEE M M, TAJBAKHSH N, et al. Unet++: a nested U-net architecture for medical image segmentation[C]//Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. [S. l. ]: Springer Cham, 2018: 3-11. [5] RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]//Proceedings of International Conference on Medical Image Computing and Computer Assisted Intervention. New York: Springer, 2015: 234–241. [6] SCHLEMPER J, OKTAY O, SCHAAP M, et al. Attention gated networks: learning to leverage salient regions in medical images [J]. Medical Image Analysis, 2019, 53: 197-207. [7] ABDELTAWAB H, KHALIFA F, TAHER F, et al. A deep learning-based approach for automatic segmentation and quantification of the left ventricle from cardiac cine MR images [J]. Computerized Medical Imaging and Graphics, 2020, 81: 1-11. [8] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of Neural Information Processing Systems. Long Beach: MIT Press, 2017: 5998-6008. [9] CAO H, WANG Y Y, CHEN J, et al. Swin-unet: Unet-like pure transformer for medical image segmentation[C]//European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2022: 205-218. [10] ZHOU H Y, GUO J, ZHANG Y H, et al. Nnformer: interleaved transformer for volumetric segmentation[EB/OL]. arXiv: 2109.03201(2022-02-04) [2023-09-30]. https://arxiv.org/abs/2109.03201. [11] TRAGAKIS A, KAUL C, MURRAY-SMITH R, et al. The fully convolutional transformer for medical image segmentation[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. Waikoloa: IEEE, 2023: 3649-3658. [12] 梁礼明, 何安军, 朱晨锟, 等. 融合Transformer和跨级相位感知的结肠息肉分割方法[J]. 生物医学工程学杂志, 2023, 40(2): 234-243. LIANG L M, HE A J, ZHU C K, et al. Colorectal polyp segmentation method based on fusion of transformer and cross-level phase awareness [J]. Journal of Biomedical Engineering, 2023, 40(2): 234-243. [13] STEMBER J N, SHALU H. Unsupervised deep clustering and reinforcement learning can accurately segment MRI brain tumors with very small training sets[C]//International Symposium on Intelligent Informatics. Singapore: Springer Nature Singapore, 2022: 255-270. [14] STEMBER J N, SHALU H. Deep reinforcement learning-based image classification achieves perfect testing set accuracy for MRI brain tumors with a training set of only 30 images [EB/OL]. arXiv: 2102.02895(2022-05-19) [2023-09-30]. https://arxiv.org/abs/2102.02895. [15] ZHOU S K, LE H N, LUU K, et al. Deep reinforcement learning in medical imaging: a literature review [J]. Medical Image Analysis, 2021, 73: 1-20. [16] MORTAZI A, BAGCI U. Automatically designing CNN architectures for medical image segmentation[C]//Machine Learning in Medical Imaging: 9th International Workshop, MLMI 2018, Held in Conjunction with MICCAI 2018. Granada: Springer International Publishing, 2018: 98-106. [17] QIN T X, WANG Z Y, HE K L, et al. Automatic data augmentation via deep reinforcement learning for effective kidney tumor segmentation[C]// ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) . Barcelona: IEEE, 2020: 1419-1423. [18] LIAO X, LI W H, XU Q, et al. Iteratively-refined interactive 3D medical image segmentation with multi-agent reinforcement learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: CVF, 2020: 9394-9402. [19] BERNARD O, LALANDE A, ZOTTI C, et al. Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved? [J]. IEEE Transactions on Medical Imaging, 2018, 37(11): 2514-2525. [20] RADAU P, LU Y, CONNELLY K, et al. Evaluation framework for algorithms segmenting short axis cardiac MRI [J]. The MIDAS Journal, 2009, 7: 100-107. [21] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778. [22] CHEN J, LU Y, YU Q, et al. Transunet: transformers make strong encoders for medical image segmentation[EB/OL]. arXiv: 2102.04306(2021-02-08) [2023-09-30]. https://arxiv.org/abs/2102.04306. [23] HUANG Y, WEI G L, WANG Y X. V-D D3QN: the variant of double deep q-learning network with dueling architecture[C]//2018 37th Chinese Control Conference (CCC) . Wuhan: IEEE, 2018: 9130-9135. [24] VAN HASSELT H, GUEZ A, SILVER D. Deep reinforcement learning with double q-learning[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Phoenix: AAAI Press, 2016: 2094–2100. [25] WANG Z Y, SCHAUL T, HESSEL M, et al. Dueling network architectures for deep reinforcement learning[C]//International Conference on Machine Learning. New York: JMLR Organization, 2016: 1995-2003. [26] ZHANG Z J, FU H Z, DAI H, et al. ET-Net: a generic edge-attention guidance network for medical image segmentation[C]//Medical Image Computing and Computer Assisted Intervention-MICCAI 2019: 22nd International Conference. Shenzhen: Springer International Publishing, 2019: 442-450. [27] SHEELA C J J, SUGANTHI G. Morphological edge detection and brain tumor segmentation in Magnetic Resonance (MR) images based on region growing and performance evaluation of modified Fuzzy C-Means (FCM) algorithm [J]. Multimedia Tools and Applications, 2020, 79: 17483-17496. [28] SHEELA C J J, SUGANTHI G. Brain tumor segmentation with radius contraction and expansion based initial contour detection for active contour model [J]. Multimedia Tools and Applications, 2020, 79: 23793-23819. [29] KINGMA D, BA J. Adam: a method for stochastic optimization[EB/OL]. arXiv: 1412.6980(2017-01-30) [2023-09-30]. https://arxiv.org/abs/1412.6980. |
[1] | Chen Hong-qi, Luo De-xin, Lan Liang, Zhang Zhi-hao, Zhang Guo-hao. A Design of a 24-27 GHz Cascode High Gain Low Noise Amplifier [J]. Journal of Guangdong University of Technology, 2024, 41(06): 26-32.doi: 10.12052/gdutxb.230156 |
[2] | Feng Guang, Bao Long. Face Recognition Method in Complex Environment Based on Infrared Visible Fusion [J]. Journal of Guangdong University of Technology, 2024, 41(03): 62-70,109.doi: 10.12052/gdutxb.230156 |
[3] | Guo Ao, Xu Bo-yan, Cai Rui-chu, Hao Zhi-feng. Temporal Alignment Style Control in Text-to-Speech Synthesis Algorithm [J]. Journal of Guangdong University of Technology, 2024, 41(02): 84-92.doi: 10.12052/gdutxb.230156 |
[4] | Lai Zhi-mao, Zhang Yun, Li Dong. A Survey of Deepfake Detection Techniques Based on Transformer [J]. Journal of Guangdong University of Technology, 2023, 40(06): 155-167.doi: 10.12052/gdutxb.230156 |
[5] | Gan Meng-kun, Zeng An, Zhang Xiao-bo. Aortic Re-coarctation Prediction Research Based on Swin-Unet [J]. Journal of Guangdong University of Technology, 2023, 40(05): 34-40.doi: 10.12052/gdutxb.230156 |
[6] | Su Tian-ci, He Zi-nan, Cui Miao, Zhang Guang-chi. Intelligent Path Planning Algorithm for Multi-UAV-assisted Data Collection Systems [J]. Journal of Guangdong University of Technology, 2023, 40(04): 77-84.doi: 10.12052/gdutxb.230156 |
[7] | He Yi-shan, Wang Yong-hua, Wan Pin, Wang Lei, Wu Wen-tao. An Improved Double Deep Q Network for Multi-user Dynamic Spectrum Access [J]. Journal of Guangdong University of Technology, 2023, 40(04): 85-93.doi: 10.12052/gdutxb.230156 |
[8] | Guo Xin-de, Chris Hong-qiang Ding. An AGV Path Planning Method for Discrete Manufacturing Smart Factory [J]. Journal of Guangdong University of Technology, 2021, 38(06): 70-76.doi: 10.12052/gdutxb.230156 |
[9] | Ye Wei-jie, Gao Jun-li, Jiang Feng, Guo Jing. A Research on a Training Model to Improve the Development Efficiency of Robot Reinforcement Learning [J]. Journal of Guangdong University of Technology, 2020, 37(05): 46-50.doi: 10.12052/gdutxb.230156 |
[10] | Zhang Miao, Pang Zhuo-biao, Hao Xue-dong, Xie Si-wei, Zhang Xing-wang. A Research on a Transformerless Parallel Hybrid Active Power Filter [J]. Journal of Guangdong University of Technology, 2019, 36(05): 33-37.doi: 10.12052/gdutxb.230156 |
[11] | Dong Wen-hua, Li Chun-lai, Lan Xiong. Design and Experimental Analysis of an Open-close Micro Current Transformer [J]. Journal of Guangdong University of Technology, 2019, 36(04): 65-69.doi: 10.12052/gdutxb.230156 |
[12] | Wu Yun-xiong, Zeng Bi. Trajectory Tracking and Dynamic Obstacle Avoidance of Mobile Robot Based on Deep Reinforcement Learning [J]. Journal of Guangdong University of Technology, 2019, 36(01): 42-50.doi: 10.12052/gdutxb.230156 |
[13] | CHEN Zhi-Hui, WANG Ren-Huang, WANG Zhi-Min. An Improved Image Segmentation of CV Level Set [J]. Journal of Guangdong University of Technology, 2015, 32(2): 104-108.doi: 10.12052/gdutxb.230156 |
[14] | Wang Zhen-you, Zheng Shao-jie, He Yuan-cai, Lin Jie-zhi, Su Na, Long Jie-li. A Calculation Method of the Volume of PET Image in the Regionofinterest [J]. Journal of Guangdong University of Technology, 2013, 30(3): 65-69.doi: 10.12052/gdutxb.230156 |
[15] | He Rui-wen, Xie Qiong-xiang, Cai Ze-xiang. Influence of Digital Acquisition of the Electrical Information on the Reliability of Relay Protection [J]. Journal of Guangdong University of Technology, 2013, 30(2): 68-73.doi: 10.12052/gdutxb.230156 |
|