广东工业大学学报 ›› 2020, Vol. 37 ›› Issue (06): 56-62.doi: 10.12052/gdutxb.190160
黄慧敏, 郭承军
Huang Hui-min, Guo Cheng-jun
摘要: 通过运用不动点理论方法和Lyapunov稳定性定理,研究了一类脉冲随机微分方程解的稳定性,得到了该方程均方指数稳定的充分条件。
中图分类号:
[1] LIU K. Stability of infinite dimensional stochastic differential equations with applications[M]. London: Chapman & Hall/CRC, 2005. [2] MAO X R. Exponential stability in mean square of neutral stochastic differential functional equations [J]. Systems and Control Letters, 1995, 26(4): 245-251. [3] GUO C J, O’REGAN D, DENG F Q. Fixed points and exponential stability for a stochastic neutral cellular network [J]. Applied Mathematics Letters, 2013, 26(8): 849-853. [4] LI D S, FAN X M. Exponential stability of impulsive stochastic partial differential equations with delays [J]. Statistics and Probability Letters, 2017, 126: 185-192. [5] HU W, ZHU Q X. Moment exponential stability of stochastic nonlinear delay systems with impulse effects at random times [J]. International Journal of Robust and Nonlinear Control, 2009, 29: 3809-3820. [6] FU X Z, ZHU Q X, GUO Y X. Stabilization of stochastic functional differential systems with delayed impulses [J]. Applied Mathematics and Computation, 2019, 346: 776-789. [7] YU G S, YANG W Q, XU L. Pth moment and almost sure exponential stability of impulsive neutral stochastic functional differential equations with markovian switching [J]. International Journal of Systems Science, 2018, 49(6): 1164-1177. [8] LUO J W. Fixed points and exponential stability of mild solutions of stochastic partial differential equations with delays [J]. Journal of Mathematical Analysis and Applications, 2008, 342(2): 753-760. [9] 徐林, 宋常修. 一类三阶时滞微分方程的稳定性和有界性[J]. 广东工业大学学报, 2015, 32(1): 128-132. XU L, SONG C X. Stability and boundedness of a class of third-order delay differential equations [J]. Journal of Guangdong University of Technology, 2015, 32(1): 128-132. [10] CHENGUP, DENG F Q. Global exponential stability of impulsive stochastic functional Differential systems [J]. Statistics and Probability Letters, 2010, 80(23-24): 1854-1862. [11] CHENGUP, DENGUF Q, YAOUF Q. Almost sure exponential stability and stochastic stabilization of stochastic differential systems with impulsive effects [J]. Nonlinear Analysis Hybrid Systems, 2018, 30: 106-117. [12] CUI J, YAN L T. Asymptotic behavior for neutral stochastic partial differential equations with infinite delays [J]. Electronic Communications in Probability, 2013, 18(45): 1-12. [13] CHEN G L, GAANS O V, LUNEL S V. Existence and exponential stability of a class of impul- sive neutral stochastic partial differential equations with delays and Poisson jumps [J]. Statistics and Probability Letters, 2018, 141: 7-18. [14] MAO X R. Stochastic differential equations and applications[M]. Chichestic: Horwood Publishing Limited, 2007. [15] XU Y, HE Z M. Exponential stability of neutral stochastic delay differential equations with Markovian switching [J]. Applied Mathematics Letters, 2016, 52: 64-73. |
[1] | 陈靖宇, 吕毅. 基于脉冲神经网络的冷链制冷机结霜检测方法[J]. 广东工业大学学报, 2023, 40(01): 29-38. |
[2] | 谷志华, 彭世国, 黄昱嘉, 冯万典, 曾梓贤. 基于事件触发脉冲控制的具有ROUs和RONs的非线性多智能体系统的领导跟随一致性研究[J]. 广东工业大学学报, 2023, 40(01): 50-55. |
[3] | 邹翀, 唐雄民, 陈伟正, 江天鸿, 方文睿. 脉冲电流源作用下大气压介质阻挡放电的特性分析[J]. 广东工业大学学报, 2022, 39(04): 36-45. |
[4] | 刘雪, 刘忠明, 席跃宾, 王守娟, 孔凡功. 木质素基超疏水涂层的制备及其应用性能研究[J]. 广东工业大学学报, 2022, 39(01): 34-40,134. |
[5] | 唐浩怡, 彭红云. 三维趋化系统全局弱解的存在性和渐近稳定性[J]. 广东工业大学学报, 2022, 39(01): 93-98. |
[6] | 郑子钊, 彭世国, 付志文, 徐云剑. 脉冲控制下一类多权重复杂网络的鲁棒H∞同步[J]. 广东工业大学学报, 2021, 38(03): 55-61. |
[7] | 周民华, 张文进, 潘春阳. 镓离子掺杂的CsPbBr3量子点的制备及其性能研究[J]. 广东工业大学学报, 2021, 38(02): 83-87. |
[8] | 梁仕华, 陈俊涛, 林焕生, 冯德銮, 龚星, 罗庆姿. 水泥固化淤泥废弃土作为填土材料的试验研究[J]. 广东工业大学学报, 2020, 37(02): 102-106. |
[9] | 刘陈霖, 郑三强, 韩晓卓. 具有Allee效应捕食-竞争系统的时空动态分析[J]. 广东工业大学学报, 2019, 36(06): 38-44. |
[10] | 张会琴, 汪志波. 带周期边界的时间分数阶扩散方程的差分格式[J]. 广东工业大学学报, 2019, 36(03): 74-79. |
[11] | 汪翔, 刘立凡, 王志红, 漆文光. 优质地表水源突发污染后长距离输水水质稳定性研究[J]. 广东工业大学学报, 2019, 36(03): 99-102,110. |
[12] | 刘铭炜, 禹智涛, 贺绍华. 基于统一理论的钢管混凝土拱桥稳定性分析[J]. 广东工业大学学报, 2018, 35(06): 63-68. |
[13] | 张振华, 彭世国. 二阶多智能体系统拓扑切换下的领导跟随一致性[J]. 广东工业大学学报, 2018, 35(02): 75-80. |
[14] | 庄小兰, 王琦. 一阶时滞微分方程欧拉法的动力性[J]. 广东工业大学学报, 2018, 35(01): 46-49. |
[15] | 赵腾起, 朱燕娟, 李文华, 简修文, 罗洁, 张伟, 张春华. 掺杂氢氧化镍晶相及其结构稳定性与碳酸钠用量的关系研究[J]. 广东工业大学学报, 2016, 33(04): 56-61. |
|