广东工业大学学报 ›› 2022, Vol. 39 ›› Issue (01): 41-49.doi: 10.12052/gdutxb.210138
于健, 陈泽虹, 彭新文
Yu Jian, Chen Ze-hong, Peng Xin-wen
摘要: 随着柔性器件和可穿戴设备的发展及人类环保意识的提高, 开发高能效、高能量和功率密度、绿色环保的新型柔性储能装置受到了广泛的关注。然而, 传统的有机聚合物、贵金属等材料不仅价格昂贵而且面临资源枯竭的危机, 难以满足柔性器件发展的需要。生物质资源具有储量丰富、可再生、环境友好、生物相容性好、价格低廉等特点, 是制备柔性储能材料的理想前驱体。本文综述了生物质基柔性电极材料、固态电解质、隔膜等的制备与合成方法, 以及此类材料在超级电容器、金属−空气电池、锂离子电池、锂硫电池等领域的应用。
中图分类号:
[1] 张青峰, 朱钰漕, 张涣芝, 等. 生物质及其衍生材料在有机复合相变储能材料中的应用[J]. 现代化工, 2021, 41(7): 56-67. ZHANG Q F, ZHU Y C, ZHANG H Z, et al. Application of biomass and its derived materials in organic composite phase change energy storage materials [J]. Modern Chemical Industry, 2021, 41(7): 56-67. [2] 张伟业, 刘毅, 郭洪武. 木质基电化学储能器件的研究进展[J]. 材料导报, 2020, 34(23): 23001-23008. ZHANG W Y, LIU Y, GUO H W. Research progress of wood-based electrochemical energy storage devices [J]. Materials Reports, 2020, 34(23): 23001-23008. [3] SENTHIL C, LEE C W. Biomass-derived biochar materials as sustainable energy sources for electrochemical energy storage devices [J]. Renewable and Sustainable Energy Reviews, 2020, 137: 110464. [4] WANG J, NIE P, DING B, et al. Biomass derived carbon for energy storage devices [J]. Journal of Materials Chemistry A, 2017, 5(6): 2411-2428. [5] 赵东江, 马松艳, 田喜强, 等. 玉米秸秆生物质炭在电化学储能中的应用[J]. 绥化学院学报, 2020, 40(11): 142-147. ZHAO D J, MA S Y, TIAN X Q, et al. Application of corn straw biochar in electrochemical energy storage [J]. Journal of Suihua University, 2020, 40(11): 142-147. [6] 邓筠飞, 杜卫民, 王梦瑶, 等. 基于玉米秸秆合成的多孔生物质炭材料及其电化学储能[J]. 应用化学, 2019, 36(11): 1323-1332. DENG J F, DU W M, WANG M Y, et al. Synthesis and the electrochemical energy storage of porous biomass carbon from corn stalk [J]. Applied Chemistry, 2019, 36(11): 1323-1332. [7] ZHOU J, CHENG J, WANG B, et al. Flexible metal–gas batteries: a potential option for next-generation power accessories for wearable electronics [J]. Energy & Environmental Science, 2020, 13(7): 1933-1970. [8] GAO Y P, ZHAI Z B, HUANG K J, et al. Energy storage applications of biomass-derived carbon materials: batteries and supercapacitors [J]. New Journal of Chemistry, 2017, 41(20): 11456-11470. [9] TAN P, CHEN B, XU H, et al. Flexible Zn–and Li–air batteries: recent advances, challenges, and future perspectives [J]. Energy & Environmental Science, 2017, 10(10): 2056-2080. [10] QIAN G, LIAO X, ZHU Y, et al. Designing flexible lithium-ion batteries by structural engineering [J]. ACS Energy Letters, 2019, 4(3): 690-701. [11] ZHAO X, WANG C, LI Z, et al. Sulfurized polyacrylonitrile for high-performance lithium sulfur batteries: advances and prospects [J]. Journal of Materials Chemistry A, 2021, 9: 19282-19297. [12] HUANG S, ZHU X, SARKAR S, et al. Challenges and opportunities for supercapacitors [J]. APL Materials, 2019, 7(10): 100901. [13] WANG X, KERR R, CHEN F, et al. Toward high-energy-density lithium metal batteries: opportunities and challenges for solid organic electrolytes [J]. Advanced Materials, 2020, 32(18): 1905219. [14] 时君友. 生物质衍生炭材料的多维结构设计及其超级电容器研究进展[J]. 北华大学学报(自然科学版), 2019, 20(5): 561-571. SHI J Y. Research progress on muti-dimensional structure design and supercapacitors performance of biomass-derived carbon materials [J]. Journal of Beihua University (Natural Science), 2019, 20(5): 561-571. [15] 梁晨. 用于超级电容器电极的生物质炭及其复合材料的制备与性能研究 [D]. 长春: 吉林大学, 2019. [16] LIU Q, JING S, WANG S, et al. Flexible nanocomposites with ultrahigh specific areal capacitance and tunable properties based on a cellulose derived nanofiber-carbon sheet framework coated with polyaniline [J]. Journal of Materials Chemistry A, 2016, 4(34): 13352-13362. [17] GAO K, SHAO Z, LI J, et al. Cellulose nanofiber–graphene all solid-state flexible supercapacitors [J]. Journal of Materials Chemistry A, 2013, 1(1): 63-67. [18] CHEN R, LI X, HUANG Q, et al. Self-assembled porous biomass carbon/RGO/nanocellulose hybrid aerogels for self-supporting supercapacitor electrodes [J]. Chemical Engineering Journal, 2021, 412: 128755. [19] YUAN L, YAO B, HU B, et al. Polypyrrole-coated paper for flexible solid-state energy storage [J]. Energy & Environmental Science, 2013, 6(2): 470-476. [20] YAO B, YUAN L, XIAO X, et al. Based solid-state supercapacitors with pencil-drawing graphite/polyaniline networks hybrid electrodes [J]. Nano Energy, 2013, 2(6): 1071-1078. [21] MO M, CHEN C, GAO H, et al. Wet-spinning assembly of cellulose nanofibers reinforced graphene/polypyrrole microfibers for high performance fiber-shaped supercapacitors [J]. Electrochimica Acta, 2018, 269: 11-20. [22] HAO P, ZHAO Z, TIAN J, et al. Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode [J]. Nanoscale, 2014, 6(20): 12120-12129. [23] XIAO P W, MENG Q, ZHAO L, et al. Biomass-derived flexible porous carbon materials and their applications in supercapacitor and gas adsorption [J]. Materials & Design, 2017, 129: 164-172. [24] WU K, ZHANG L, YUAN Y, et al. An iron-decorated carbon aerogel for rechargeable flow and flexible Zn-air batteries [J]. Advanced Materials, 2020, 32(32): 2002292. [25] LI L, CHEN H, HE E, et al. High-energy-density magnesium-air battery based on dual-layer gel electrolyte [J]. Angewandte Chemie International Edition, 2021, 60(28): 15317-15322. [26] HU K, YU T, ZHANG Y, et al. Inhibiting surface diffusion to synthesize 3D bicontinuous nanoporous N-doped carbon for boosting oxygen reduction reaction in flexible all-solid-state Al-air batteries [J]. Advanced Functional Materials, 2021: 2103632. [27] CHI X, LI M, DI J, et al. A highly stable and flexible zeolite electrolyte solid-state Li-air battery [J]. Nature, 2021, 592(7855): 551-557. [28] LIU W, SONG M S, KONG B, et al. Flexible and stretchable energy storage: recent advances and future perspectives [J]. Advanced Materials, 2017, 29(1): 1603436. [29] YE L, HONG Y, LIAO M, et al. Recent advances in flexible fiber-shaped metal-air batteries [J]. Energy Storage Materials, 2020, 28: 364-374. [30] ZHU Y H, YANG X Y, LIU T, et al. Flexible 1D batteries: recent progress and prospects [J]. Advanced Materials, 2020, 32(5): 1901961. [31] LIU Q C, LI L, XU J J, et al. Flexible and foldable Li–O2 battery based on paper-ink cathode [J]. Advanced Materials, 2015, 27(48): 8095-8101. [32] WANG Z, KANG K, WU J, et al. Comparative effects of electrospinning ways for fabricating green, sustainable, flexible, porous, nanofibrous cellulose/chitosan carbon mats as anode materials for lithium-ion batteries [J]. Journal of Materials Research and Technology, 2021, 11: 50-61. [33] TAO L, HUANG Y, ZHENG Y, et al. Porous carbon nanofiber derived from a waste biomass as anode material in lithium-ion batteries [J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 95: 217-226. [34] LI S, JIN B, ZHAI X, et al. Review of carbon materials for lithium-sulfur batteries [J]. Chemistry Select, 2018, 3(8): 2245-2260. [35] CHUNG S H, CHANG C H, MANTHIRAM A. A carbon-cotton cathode with ultrahigh-loading capability for statically and dynamically stable lithium–sulfur batteries [J]. ACS Nano, 2016, 10(11): 10462-10470. [36] WU F, ZHAO E, GORDON D, et al. Infiltrated porous polymer sheets as free-standing flexible lithium-sulfur battery electrodes [J]. Advanced Materials, 2016, 28(30): 6365-6371. [37] TAKADA K. Progress in solid electrolytes toward realizing solid-state lithium batteries [J]. Journal of Power Sources, 2018, 394: 74-85. [38] DING B, WANG J, FAN Z, et al. Solid-state lithium–sulfur batteries: advances, challenges and perspectives [J]. Materials Today, 2020, 40: 114-131. [39] MANTHIRAM A, YU X, WANG S. Lithium battery chemistries enabled by solid-state electrolytes [J]. Nature Reviews Materials, 2017, 2(4): 1-16. [40] PENG Z, ZOU Y, XU S, et al. High-performance biomass-based flexible solid-state supercapacitor constructed of pressure-sensitive lignin-based and cellulose hydrogels [J]. ACS Applied Materials & interfaces, 2018, 10(26): 22190-22200. [41] HUANG Q, YANG Y, CHEN R, et al. High performance fully paper-based all-solid-state supercapacitor fabricated by a papermaking process with silver nanoparticles and reduced graphene oxide-modified pulp fibers [J]. EcoMat, 2021, 3(1): e12076. [42] ZHAO N, WU F, XING Y, et al. Flexible hydrogel electrolyte with Superior mechanical properties based on poly (vinyl alcohol) and bacterial cellulose for the solid-state zinc–air batteries [J]. ACS Applied Materials & Interfaces, 2019, 11(17): 15537-15542. [43] LIN Y, LI J, LIU K, et al. Unique starch polymer electrolyte for high capacity all-solid-state lithium sulfur battery [J]. Green Chemistry, 2016, 18(13): 3796-3803. [44] HUANG X, HE R, LI M, et al. Functionalized separator for next-generation batteries [J]. Materials Today, 2020, 41: 143-155. [45] SHARMA P R, VARMA A J. Functional nanoparticles obtained from cellulose: Engineering the shape and size of 6-carboxycellulose [J]. Chemical Communications, 2013, 49(78): 8818-8820. [46] SHARMA P R, VARMA A J. Thermal stability of cellulose and their nanoparticles: effect of incremental increases in carboxyl and aldehyde groups [J]. Carbohydrate Polymers, 2014, 114: 339-343. [47] ROJAS O J, MONTERO G A, Habibi Y. Electrospun nanocomposites from polystyrene loaded with cellulose nanowhiskers [J]. Journal of Applied Polymer Science, 2009, 113(2): 927-935. [48] ISLAM M A, ONG H L, HALIM K A A, et al. Biomass–derived cellulose nanofibrils membrane from rice straw as sustainable separator for high performance supercapacitor [J]. Industrial Crops and Products, 2021, 170: 113694. [49] PLATNIEKS O, GAIDUKOVS S, BARKANE A, et al. Bio-based poly (butylene succinate)/microcrystalline cellulose/nanofibrillated cellulose-based sustainable polymer composites: Thermo-mechanical and biodegradation studies [J]. Polymers, 2020, 12(7): 1472. [50] CHEN W, YU H, LEE S Y, et al. Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage [J]. Chemical Society Reviews, 2018, 47(8): 2837-2872. [51] KIM J H, KIM J H, CHOI E S, et al. Colloidal silica nanoparticle-assisted structural control of cellulose nanofiber paper separators for lithium-ion batteries [J]. Journal of Power Sources, 2013, 242: 533-540. [52] LIS, ZHU W, TANG Q, et al. Mini review on cellulose-based composite separators for lithium-ion batteries: recent progress and perspectives [J]. Energy & Fuels, 2021, 35(16): 12938-12947. [53] WANG Z, ZHANG J, YANG Y, et al. Flexible carbon nanofiber/polyvinylidene fluoride composite membranes as interlayers in high-performance lithium sulfur batteries [J]. Journal of Power Sources, 2016, 329: 305-313. [54] ZHU L, YOU L, ZHU P, et al. High performance lithium–sulfur batteries with a sustainable and environmentally friendly carbon aerogel modified separator [J]. ACS Sustainable Chemistry & Engineering, 2018, 6(1): 248-257. [55] XU Q, KONG Q, LIU Z, et al. Polydopamine-coated cellulose microfibrillated membrane as high performance lithium-ion battery separator [J]. RSC Advances, 2014, 4(16): 7845-7850. |
[1] | 万涛, 原文雄, 赵晨, 闵永刚. 二维材料与导电聚合物复合材料在柔性超级电容器中的研究进展[J]. 广东工业大学学报, 2023, 40(02): 74-81. |
[2] | 欧永振, 邱瑞铭, 雷励斌. 基于质子导体固体氧化物燃料电池制备乙烯的电化学模型研究[J]. 广东工业大学学报, 2023, 40(02): 82-87. |
[3] | 孟庆鑫, 赖旭芝, 闫泽, 吴敏. 驱动器故障影响下柔性机械臂运动控制的进展与展望[J]. 广东工业大学学报, 2022, 39(05): 9-20. |
[4] | 吴锡鸿, 叶国华, 黄润业, 张国庆, 杨晓青, 李新喜. 新型管状相变材料热管理系统的数值仿真与实验研究[J]. 广东工业大学学报, 2022, 39(03): 133-138. |
[5] | 张海波, 夏鸿建, 李德源, 刘佳宇. 基于绝对节点坐标法的三维柔性旋转梁动力特性分析[J]. 广东工业大学学报, 2022, 39(02): 76-83. |
[6] | 孙晓龙, 张奕康, 袁俊申, 仓智, 尹应梅, 刘志胜. 生物沥青的研究现状及发展趋势[J]. 广东工业大学学报, 2022, 39(02): 105-119. |
[7] | 罗朝兵, 李海潮, 游婷婷, 许凤. 木质素低共熔溶剂分离、功能材料制备及应用研究进展[J]. 广东工业大学学报, 2022, 39(01): 1-13. |
[8] | 丁冰晓, 李玄, 路松, 赵纪宇. 新型限力输出保护功能柔性夹钳的设计与参数评估[J]. 广东工业大学学报, 2021, 38(05): 52-58. |
[9] | 张兆轩, 陈璟华, 赵炳耀, 陈友鹏. 考虑集中充电站的电池换电站选址定容规划[J]. 广东工业大学学报, 2021, 38(05): 59-67. |
[10] | 李越珠, 黄兴文, 廖松义, 刘屹东, 闵永刚. 锂离子电池高镍三元正极材料LiNi0.8Co0.1Mn0.1O2研究进展[J]. 广东工业大学学报, 2021, 38(05): 68-74. |
[11] | 林靖雄, 李振鹏, 叶远茂. 基于STM32和BQ76940的电池管理系统设计[J]. 广东工业大学学报, 2020, 37(06): 78-84. |
[12] | 张江云, 张国庆, 陈炫庄, 甄志诚. 相变材料/导热翅片复合热管理系统应用于三元体系锂离子动力电池模组实验研究[J]. 广东工业大学学报, 2020, 37(01): 15-22. |
[13] | 江艳, 黄金, 罗文. 偶氮苯光致异构储能材料的研究进展[J]. 广东工业大学学报, 2019, 36(05): 71-85. |
[14] | 曾丽珍, 何苗. 碳化棉织物作为微生物燃料电池廉价阳极材料的研究[J]. 广东工业大学学报, 2018, 35(04): 111-118. |
[15] | 张美杰, 张平. 微薄硅晶片高速视觉定位及矫正系统[J]. 广东工业大学学报, 2018, 35(01): 9-15. |
|