Journal of Guangdong University of Technology ›› 2023, Vol. 40 ›› Issue (01): 56-60,76.doi: 10.12052/gdutxb.210028
Previous Articles Next Articles
Xu Wei-feng, Cai Shu-ting, Xiong Xiao-ming
CLC Number:
[1] CADENA C, CARLONE L, CARRILLO H, et al. Past, present, and future of simultaneous localization and mapping: toward the robust-perception age [J]. IEEE Transactions on Robotics, 2016, 32(6): 1309-1332. [2] PARK S, SCHÖPS T, POLLEFEYS M. Illumination change robustness in direct visual slam[C]//2017 IEEE international conference on Robotics and Automation (ICRA) . Singapore: IEEE, 2017: 4523-4530. [3] 池鹏可, 苏成悦. 移动机器人中单目视觉里程计的研究[J]. 广东工业大学学报, 2017, 34(5): 40-44. CHI P K, SU C Y. A Research on monocular visual odometry for mobile robots [J]. Journal of Guangdong University of Technology, 2017, 34(5): 40-44. [4] 汝少楠, 何元烈, 叶星余. 基于稀疏直接法闭环检测定位的视觉里程计[J]. 广东工业大学学报, 2021, 38(3): 48-54. RU S N, HE Y L, YE X Y. Visual odometry based on sparse direct method loop-closure detection [J]. Journal of Guangdong University of Technology, 2021, 38(3): 48-54. [5] STRASDAT H, MONTIEL J, DAVISON A J. Scale drift-aware large scale monocular SLAM[C]// Robotics: Science and Systems VI. Zaragoza: MIT Press, 2010. [6] MUR-ARTAL R, TARDÓS J D. Visual-inertial monocular SLAM with map reuse [J]. IEEE Robotics and Automation Letters, 2017, 2(2): 796-803. [7] FORSTER C, CARLONE L, DELLAERT F, et al. On-manifold preintegration for real-time visual-inertial odometry [J]. IEEE Transactions on Robotics, 2016, 33(1): 1-21. [8] QIN T, SHEN S. Online temporal calibration for monocular visual-inertial systems[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) . Madrid: IEEE, 2018: 3662-3669. [9] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. Yolov4: Optimal speed and accuracy of object detection[EB/OL]. arXiv: 2004.10934 (2020-04-23). https://arxiv.org/abs/2004.10934. [10] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 3431-3440. [11] EIGEN D, FERGUS R. Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture[C]//Proceedings of the IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 2650-2658. [12] TORRES-CAMARA J M, ESCALONA F, GOMEZ-DONOSO F, et al. Map slammer: densifying scattered KSLAM 3D maps with estimated depth[C]//Iberian Robotics Conference. Porto: Springer, Cham, 2019: 563-574. [13] YANG S, SCHERER S. Cubeslam: monocular 3-D object SLAM [J]. IEEE Transactions on Robotics, 2019, 35(4): 925-938. [14] GRINVALD M, FURRER F, NOVKOVIC T, et al. Volumetric instance-aware semantic mapping and 3D object discovery [J]. IEEE Robotics and Automation Letters, 2019, 4(3): 3037-3044. [15] DETONE D, MALISIEWICZ T, RABINOVICH A. Superpoint: self-supervised interest point detection and description[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. Salt Lake City: IEEE, 2018: 224-236. [16] GROMPONE VON GIOI R, JAKUBOWICZ J, MOREL J M, et al. LSD: a fast line segment detector with a false detection control [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 32(4): 722-732. [17] HUANG H, YE H, SUN Y, et al. Monocular visual odometry using learned repeatability and description[C]//2020 IEEE International Conference on Robotics and Automation (ICRA) . Paris: IEEE, 2020: 8913-8919. [18] CAMPOS C, ELVIRA R, RODRÍGUEZ J J G, et al. ORB-SLAM3: an accurate open-source library for visual, visual-inertial and multi-map SLAM[EB/OL]. arXiv: 2007.11898 (2020-07-23). https://arxiv.org/abs/2007.1189801. [19] BURRI M, NIKOLIC J, GOHL P, et al. The EuRoC micro aerial vehicle datasets [J]. The International Journal of Robotics Research, 2016, 35(10): 1157-1163. |
[1] | Liu Dong-ning, Wang Zi-qi, Zeng Yan-jiao, Wen Fu-yan, Wang Yang. Prediction Method of Gene Methylation Sites Based on LSTM with Compound Coding Characteristics [J]. Journal of Guangdong University of Technology, 2023, 40(01): 1-9. |
[2] | Liu Hong-wei, Lin Wei-zhen, Wen Zhan-ming, Chen Yan-jun, Yi Min-qi. A MABM-based Model for Identifying Consumers' Sentiment Polarity―Taking Movie Reviews as an Example [J]. Journal of Guangdong University of Technology, 2022, 39(06): 1-9. |
[3] | Zhang Yun, Wang Xiao-dong. A Review and Thinking of Deep Learning with a Restricted Number of Samples [J]. Journal of Guangdong University of Technology, 2022, 39(05): 1-8. |
[4] | Zheng Jia-bi, Yang Zhen-guo, Liu Wen-yin. Marketing-Effect Estimation Based on Fine-grained Confounder Balancing [J]. Journal of Guangdong University of Technology, 2022, 39(02): 55-61. |
[5] | Gary Yen, Li Bo, Xie Sheng-li. An Evolutionary Optimization of LSTM for Model Recovery of Geophysical Fluid Dynamics [J]. Journal of Guangdong University of Technology, 2021, 38(06): 1-8. |
[6] | Lai Jun, Liu Zhen-yu, Liu Sheng-hai. A Small Sample Data Prediction Method Based on Global Data Shuffling [J]. Journal of Guangdong University of Technology, 2021, 38(03): 17-21. |
[7] | Cen Shi-jie, He Yuan-lie, Chen Xiao-cong. A Monocular Depth Estimation Combined with Attention and Unsupervised Deep Learning [J]. Journal of Guangdong University of Technology, 2020, 37(04): 35-41. |
[8] | Zeng Bi, Ren Wan-ling, Chen Yun-hua. An Unpaired Face Illumination Normalization Method Based on CycleGAN [J]. Journal of Guangdong University of Technology, 2018, 35(05): 11-19. |
[9] | Yang Meng-jun, Su Cheng-yue, Chen Jing, Zhang Jie-xin. Loop Closure Detection for Visual SLAM Using Convolutional Neural Networks [J]. Journal of Guangdong University of Technology, 2018, 35(05): 31-37. |
[10] | Chen Xu, Zhang Jun, Chen Wen-wei, Li Shuo-hao. Convolutional Neural Network Algorithm and Case [J]. Journal of Guangdong University of Technology, 2017, 34(06): 20-26. |
[11] | Liu Zhen-yu, Li Jia-jun, Wang Kun. A Fingerprint Matching Localization Method Based on Deep Auto Encoder [J]. Journal of Guangdong University of Technology, 2017, 34(05): 15-21. |
|