Journal of Guangdong University of Technology ›› 2017, Vol. 34 ›› Issue (05): 15-21.doi: 10.12052/gdutxb.170080
Previous Articles Next Articles
Liu Zhen-yu, Li Jia-jun, Wang Kun
CLC Number:
[1] LIU H, DARABI H, BANERJEE P, et al. Survey of wireless indoor positioning techniques and systems[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2007, 37(6):1067-1080. [2] 黄婷婷, 刘广聪, 陈海南. 无线传感器网络自定位算法的研究[J]. 广东工业大学学报, 2015, 32(4):127-131.HUANG T T, LIU G C, CHEN H N. Self-localization algorithm of wireless sensors networks[J]. Journal of Guangdong University of Technology, 2015, 32(4):127-131. [3] FARID Z, NORDIN R, ISMAIL M. Recent advances in wireless indoor localization techniques and system[J]. Journal of Computer Networks & Communications, 2013, 2013(42):15-15. [4] KIM R, LIM H, HWANG S N, et al. Robust indoor localization based on hybrid Bayesian graphical models[C]//IEEE GLOBECOM. Austin:IEEE. 2014:423-429. [5] YU F, JIANG M H, LIANG J, et al. An indoor localization of wifi based on support vector machines[J]. Advanced Materials Research, 2014, 926-930(5):2438-2441. [6] WANG X, GAO L, MAO S, et al. DeepFi:Deep learning for indoor fingerprinting using channel state information[C]//Wireless Communications and Networking Conference. New Orleans:IEEE, 2015:1666-1671. [7] LUO J, GAO H. Deep belief networks for fingerprinting indoor localization using ultrawide band technology[J]. International Journal of Distributed Sensor Networks, 2016, 2016:1-8. [8] GU Y, CHEN Y, LIU J, et al. Semi-supervised deep extreme learning machine for Wi-Fi based localization[J]. Neurocomputing, 2015, 166(C):282-293. [9] ZHANG W, LIU K, ZHANG W, et al. Deep neural networks for wireless localization in indoor and outdoor environments[J]. Neurocomputing, 2016, 194(C):279-287. [10] SPOLAÔR N, CHERMAN E A, MONARD M C, et al. ReliefF for multi-label feature selection[C]//Intelligent Systems (BRACIS), 2013 Brazilian Conference on Fortaleza. Brazil:IEEE, 2013:6-11. [11] TORRES-SOSPEDRA J, MONTOLIU R, MARTINEZ-USO A, et al. UJⅡndoorLoc:A new multi-building and multi-floor database for WLAN fingerprint-based indoor localization problems[C]//International Conference on Indoor Positioning and Indoor Navigation. Busan:IEEE, 2014:261-270. [12] 陈丽娜. WLAN位置指纹室内定位关键技术研究[D]. 上海:华东师范大学信息科学技术学院. [13] O'CONNOR P, NEIL D, LIU S C, et al. Real-time classification and sensor fusion with a spiking deep belief network[J]. Frontiers in Neuroscience, 2013, 7:178 [14] VINCENT P, LAROCHELLE H, LAJOIE I, et al. Stacked denoising autoencoders:learning useful representations in a deep network with a local denoising criterion[J]. Journal of Machine Learning Research, 2010, 11(12):3371-3408. [15] SCHMIDHUBER J. Deep learning in neural networks:An overview[J]. Neural Networks, 2014, 61:85 [16] DOUGHERTY E R. Small sample issues for microarray-based classification[J]. Comparative & Functional Genomics, 2001, 2(2):28-34. [17] FÉLIX G, SILLER M, ÁLVAREZ E N. A fingerprinting indoor localization algorithm based deep learning[C]//Ubiquitous and Future Networks (ICUFN), 2016 Eighth International Conference on. Vienna:IEEE, 2016:1006-1011. |
[1] | Liu Dong-ning, Wang Zi-qi, Zeng Yan-jiao, Wen Fu-yan, Wang Yang. Prediction Method of Gene Methylation Sites Based on LSTM with Compound Coding Characteristics [J]. Journal of Guangdong University of Technology, 2023, 40(01): 1-9. |
[2] | Xu Wei-feng, Cai Shu-ting, Xiong Xiao-ming. Visual Inertial Odometry Based on Deep Features [J]. Journal of Guangdong University of Technology, 2023, 40(01): 56-60,76. |
[3] | Liu Hong-wei, Lin Wei-zhen, Wen Zhan-ming, Chen Yan-jun, Yi Min-qi. A MABM-based Model for Identifying Consumers' Sentiment Polarity―Taking Movie Reviews as an Example [J]. Journal of Guangdong University of Technology, 2022, 39(06): 1-9. |
[4] | Zhang Yun, Wang Xiao-dong. A Review and Thinking of Deep Learning with a Restricted Number of Samples [J]. Journal of Guangdong University of Technology, 2022, 39(05): 1-8. |
[5] | Zheng Jia-bi, Yang Zhen-guo, Liu Wen-yin. Marketing-Effect Estimation Based on Fine-grained Confounder Balancing [J]. Journal of Guangdong University of Technology, 2022, 39(02): 55-61. |
[6] | Gary Yen, Li Bo, Xie Sheng-li. An Evolutionary Optimization of LSTM for Model Recovery of Geophysical Fluid Dynamics [J]. Journal of Guangdong University of Technology, 2021, 38(06): 1-8. |
[7] | Lai Jun, Liu Zhen-yu, Liu Sheng-hai. A Small Sample Data Prediction Method Based on Global Data Shuffling [J]. Journal of Guangdong University of Technology, 2021, 38(03): 17-21. |
[8] | Cen Shi-jie, He Yuan-lie, Chen Xiao-cong. A Monocular Depth Estimation Combined with Attention and Unsupervised Deep Learning [J]. Journal of Guangdong University of Technology, 2020, 37(04): 35-41. |
[9] | Teng Shao-hua, Chen Cheng, Huo Ying-xiang. A Multi-Fold Self-Correction Small-Sample Classifier for Intrusion Detection [J]. Journal of Guangdong University of Technology, 2020, 37(03): 9-16. |
[10] | Peng Mei-chun, Liao Qing-rui, Zeng Long-long, Wang Jia-hao. Calculation of Carbon Reduction for New Energy Vehicles in Road Transportation [J]. Journal of Guangdong University of Technology, 2020, 37(02): 39-44. |
[11] | Zhang Hong-ye, Peng Shi-guo. A Research on the Consensus Problem of Multi-agent Systems with Random Time Delays Based on Model Reduction [J]. Journal of Guangdong University of Technology, 2019, 36(02): 86-90,96. |
[12] | Zeng Bi, Ren Wan-ling, Chen Yun-hua. An Unpaired Face Illumination Normalization Method Based on CycleGAN [J]. Journal of Guangdong University of Technology, 2018, 35(05): 11-19. |
[13] | Yang Meng-jun, Su Cheng-yue, Chen Jing, Zhang Jie-xin. Loop Closure Detection for Visual SLAM Using Convolutional Neural Networks [J]. Journal of Guangdong University of Technology, 2018, 35(05): 31-37. |
[14] | Chen Xu, Zhang Jun, Chen Wen-wei, Li Shuo-hao. Convolutional Neural Network Algorithm and Case [J]. Journal of Guangdong University of Technology, 2017, 34(06): 20-26. |
[15] | Zeng Li-zhen, Zheng Xiong-wen. The Reductive Mechanism of Prop-1-ene-1,3-sultone as Solid Electrolyte Interphase Film-forming Additive for Lithium Ion Battery [J]. Journal of Guangdong University of Technology, 2017, 34(05): 86-90. |
|