Journal of Guangdong University of Technology ›› 2024, Vol. 41 ›› Issue (05): 39-47,71.doi: 10.12052/gdutxb.230203
• Electrical Engineering • Previous Articles Next Articles
Ou Jia-jun, Zeng Wei-liang, Li Yu-feng, Fan Jing-min
CLC Number:
[1] 傅惠, 伍乃骐, 胡刚. 城市交通系统管理与优化研究综述[J]. 工业工程, 2016, 19(1): 10-15. FU H, WU N Q, HU G. An overview of management and optimization of urban transportation systems [J]. Industrial Engineering Journal, 2016, 19(1): 10-15. [2] 王建邦, 袁智勇, 陈波, 等. 变电站巡检机器人数据驱动无模型自适应控制[J]. 电测与仪表, 2019, 56(19): 114-120. WANG J B, YUAN Z Y, CHEN B, et al. Data driven model free adaptive control for substation inspection robots [J]. Electric Measurement and Instrumentation, 2019, 56(19): 114-120. [3] 黄金魁. 智能变电站三维实景无人值守感知系统的应用研究[J]. 电测与仪表, 2020, 57(4): 87-92. HUANG J K. Research on the application of three-dimensional real scene unattended sensing systems in intelligent substations [J]. Electric Measurement and Instrumentation, 2020, 57(4): 87-92. [4] 张永涛, 李博, 张甲, 等. 基于图论的变电站巡检机器人全局路径规划[J]. 山东电力技术, 2020, 47(9): 45-49. ZHANG Y T, LI B, ZHANG J, et al. Global path planning of substation inspection robots based on graph theory [J]. Shandong Electric Power Technology, 2020, 47(9): 45-49. [5] 张永涛, 于倩倩, 肖智彬, 等. 基于枚举法的变电站巡检机器人巡视路线优化[J]. 浙江电力, 2021, 40(1): 12-17. ZHANG Y T, YU Q Q, XIAO Z B, et al. Optimization of inspection routes for substation inspection robots based on enumeration method [J]. Zhejiang Electric Power, 2021, 40(1): 12-17. [6] 薛阳, 俞志程, 吴海东, 等. 基于IACO-ABC 算法的变电站巡检机器人路径规划[J]. 浙江电力, 2019, 38(11): 10-15. XUE Y, YU Z C, WU H D, et al. Path planning for substation inspection robots based on the IACO-ABC algorithm [J]. Zhejiang Electric Power, 2019, 38(11): 10-15. [7] 刘胜, 晏齐忠, 张志鑫, 等. 基于ACO-PSO算法的变电站巡检机器人路径规划研究[J]. 浙江电力, 2021, 40(1): 29-35. LIU S, YAN Q Z, ZHANG Z X, et al. Study on path planning for substation inspection robots using the ACO-PSO algorithm [J]. Zhejiang Electric Power, 2021, 40(1): 29-35. [8] 宋涛, 李丹, 路宁. 基于分层强化学习的数字化输电线路路径规划研究[J]. 电测与仪表, 2022, 59(4): 91-97. SONG T, LI D, LU N. Study on path planning for digital transmission lines using hierarchical reinforcement learning [J]. Electric Measurement and Instrumentation, 2022, 59(4): 91-97. [9] 王万良, 陈浩立, 李国庆, 等. 基于深度强化学习的多配送中心车辆路径规划[J]. 控制与决策, 2022, 37(8): 2101-2109. WANG W L, CHEN H L, LI G Q, et al. Path planning for vehicles at multiple distribution centers using deep reinforcement learning [J]. Control and Decision, 2022, 37(8): 2101-2109. [10] YANG Q, MA S, ZHANG G, et al. A new assistance navigation method for substation inspection robots to safely cross grass areas [J]. Sensors, 2023, 23(22): 9201. [11] NING X, LIU Z, LI Y. Autonomous obstacle crossing method for substation inspection robots based on locust optimization algorithm[C]//3rd International Conference on Artificial Intelligence, Automation, and High-Performance Computing. Wuhan: SPIE, 2023: 1271702. [12] 傅惠, 金诚谦, 牛张哲, 等. 网联自动驾驶货车编队规划与控制研究综述[J]. 工业工程, 2024, 27(1): 25-35. FU H, JIN C Q, NIU Z Z, et al. A comprehensive review of platoon planning and control research for networked automated driving trucks [J]. Industrial Engineering, 2024, 27(1): 25-35. [13] YANG Z, SHEN Y, ZHOU R, et al. A transfer learning fault diagnosis model of distribution transformer considering multi-factor situation evolution [J]. IEEJ Transactions on Electrical and Electronic Engineering, 2020, 15(1): 30-39. [14] YANG Z C, SHEN Y, FAN Y, et al. Research on differentiation inspection strategy of distribution networks[C]//Proceedings of the 2019 IEEE 2nd International Conference on Electronics and Communication Engineering. Xi'an: IEEE, 2019: 331-335. [15] KOOL W, VAN HOOF H, WELLING M. Attention, learn to solve routing problems![C]// International Conference on Learning Representations. New Orleans: ICLR, 2019: 1-25. [16] ZHANG K, HE F, ZHANG Z, et al. Multi-vehicle routing problems with soft time windows: a multi-agent reinforcement learning approach [J]. Transportation Research Part C: Emerging Technologies, 2020, 121: 102861. [17] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. LongBeach, California: NIPS'17, 2017: 6000-6010. [18] AREL I, LIU C, URBANIK T, et al. Reinforcement learning-based multi-agent system for network traffic signal control [J]. IET Intelligent Transport Systems, 2010, 4(2): 128-135. [19] AGARWAL A, HENAFF M, KAKADE S, et al. PC-PG: policy cover directed exploration for provable policy gradient learning [J]. Advances in Neural Information Processing Systems, 2020, 33: 13399-13412. [20] WILLIAMS R J. Simple statistical gradient-following algorithms for connectionist reinforcement learning [J]. Machine Learning, 1992, 8(3): 229-256. [21] MIRJALILI S. Genetic algorithm[M]// Evolutionary Algorithms and Neural Networks. Cham: Springer, 2019: 43-55. [22] EUCHI J, YASSINE A. A hybrid metaheuristic algorithm to solve the electric vehicle routing problem with battery recharging stations for sustainable environmental and energy optimization[J]. Energy Systems, 2023, 14(1): 243-267. [23] YAN X, LI W, HUANG Y, et al. An adaptive parameter for max-min elite ant system to solve CVRP problem[C]// 17th International Conference on Computational Intelligence and Security.Chengdu: IEEE, 2021: 580-584. |
[1] | Xie Guang-qiang, Wan Zi-kun, Li Yang. Consensus of Switched Topology in Multi-agent System Based on Layered Neighbor Selection [J]. Journal of Guangdong University of Technology, 2024, 41(04): 44-51.doi: 10.12052/gdutxb.230203 |
[2] | Chen Ying-se, Peng Shi-guo, Wang Yong-hua. Quasi-consensus of Multi-agent System under Dynamic Event-triggered Impulsive Mechanism [J]. Journal of Guangdong University of Technology, 2024, 41(04): 52-60.doi: 10.12052/gdutxb.230203 |
[3] | Xie Zheng-hao, Lai Jian-xin, Zhuang Xiao-chong, Jiang Li. Adaptive Resource Optimization for Federated Learning in UAV Digital Twin Edge Networks [J]. Journal of Guangdong University of Technology, 2024, 41(04): 61-69.doi: 10.12052/gdutxb.230203 |
[4] | Li Xue-sen, Tan Bei-hai, Yu Rong, Xue Xian-bin. Small Target Detection Algorithm for Lightweight UAV Aerial Photography Based on YOLOv5 [J]. Journal of Guangdong University of Technology, 2024, 41(03): 71-80.doi: 10.12052/gdutxb.230203 |
[5] | Tu Ze-liang, Cheng Liang-lun, Huang Guo-Heng. Local Orthogonal Feature Fusion for Few-Shot Image Classification [J]. Journal of Guangdong University of Technology, 2024, 41(02): 73-83.doi: 10.12052/gdutxb.230203 |
[6] | Lai Zhi-mao, Zhang Yun, Li Dong. A Survey of Deepfake Detection Techniques Based on Transformer [J]. Journal of Guangdong University of Technology, 2023, 40(06): 155-167.doi: 10.12052/gdutxb.230203 |
[7] | Zeng An, Chen Xu-zhou, Ji Yu-Zhu, Pan Dan, Xu Xiao-Wei. Cardiac Multiclass Segmentation Method Based on Self-attention and 3D Convolution [J]. Journal of Guangdong University of Technology, 2023, 40(06): 168-175.doi: 10.12052/gdutxb.230203 |
[8] | Hu Ran, Peng Shi-guo. Impulsive Observer-based Leader-following Consensus for Multi-agent Systems [J]. Journal of Guangdong University of Technology, 2023, 40(05): 88-93.doi: 10.12052/gdutxb.230203 |
[9] | Dai Bin, Zeng Bi, Wei Peng-fei, Huang Yong-jian. A Task-oriented Dialogue Policy Learning Method of Improved Discriminative Deep Dyna-Q [J]. Journal of Guangdong University of Technology, 2023, 40(04): 9-17,23.doi: 10.12052/gdutxb.230203 |
[10] | Su Tian-ci, He Zi-nan, Cui Miao, Zhang Guang-chi. Intelligent Path Planning Algorithm for Multi-UAV-assisted Data Collection Systems [J]. Journal of Guangdong University of Technology, 2023, 40(04): 77-84.doi: 10.12052/gdutxb.230203 |
[11] | He Yi-shan, Wang Yong-hua, Wan Pin, Wang Lei, Wu Wen-tao. An Improved Double Deep Q Network for Multi-user Dynamic Spectrum Access [J]. Journal of Guangdong University of Technology, 2023, 40(04): 85-93.doi: 10.12052/gdutxb.230203 |
[12] | Lai Dong-sheng, Feng Kai-ping, Luo Li-hong. Facial Expression Recognition Based on Multi-feature Fusion [J]. Journal of Guangdong University of Technology, 2023, 40(03): 10-16.doi: 10.12052/gdutxb.230203 |
[13] | Wu Jun-xian, He Yuan-lie. Channel Attentive Self-supervised Network for Monocular Depth Estimation [J]. Journal of Guangdong University of Technology, 2023, 40(02): 22-29.doi: 10.12052/gdutxb.230203 |
[14] | Gu Zhi-hua, Peng Shi-guo, Huang Yu-jia, Feng Wan-dian, Zeng Zi-xian. Leader-following Consensus of Nonlinear Multi-agent Systems with ROUs and RONs via Event-triggered Impulsive Control [J]. Journal of Guangdong University of Technology, 2023, 40(01): 50-55.doi: 10.12052/gdutxb.230203 |
[15] | Liu Hong-wei, Lin Wei-zhen, Wen Zhan-ming, Chen Yan-jun, Yi Min-qi. A MABM-based Model for Identifying Consumers' Sentiment Polarity―Taking Movie Reviews as an Example [J]. Journal of Guangdong University of Technology, 2022, 39(06): 1-9.doi: 10.12052/gdutxb.230203 |
|