Journal of Guangdong University of Technology ›› 2023, Vol. 40 ›› Issue (02): 15-21.doi: 10.12052/gdutxb.220079
Previous Articles Next Articles
Xie Guo-bo1, Lin Li1, Lin Zhi-yi1, He Di-xuan1, Wen Gang2
CLC Number:
[1] SANYAL S, ASLAM F, KIM T, et al. Deterioration of porcelain insulators utilized in overhead transmission lines: a review [J]. Transactions on Electrical and Electronic Materials, 2020, 21(1): 16-21. [2] MIAO X, LIU X, CHEN J, et al. Insulator detection in aerial images for transmission line inspection using single shot multibox detector [J]. IEEE Access, 2019, 7: 9945-9956. [3] CHEN M H, TIAN Y N, XING S Y, et al. Environment perception technologies for power transmission line inspection robots [J]. Journal of Sensors, 2021, 2021(2): 1-16. [4] 杨罡, 孙昌雯, 王大伟, 等. 基于无人机前端和SSD算法的输电线路部件检测模型对比研究[J]. 太原理工大学学报, 2020, 51(2): 212-219. YANG G, SUN C W, WANG D W, et al. Comparative study of transmission line component detection models based on UAV front end and SSD algorithm [J]. Journal of Taiyuan University of Technology, 2020, 51(2): 212-219. [5] LIU X, MIAO X, JIANG H, et al. Data analysis in visual power line inspection: an in-depth review of deep learning for component detection and fault diagnosis [J]. Annual Reviews in Control, 2020, 50: 253-277. [6] TAN P, LI X F, XU J M, et al. Catenary insulator defect detection based on contour features and gray similarity matching [J]. Journal of Zhejiang University - Science A:Applied Physics & Engineering, 2020, 21(1): 64-73. [7] 闫丽梅, 刘永强, 徐建军, 等. 基于Grabcut分割和填充物面积判别的复合绝缘子断串诊断[J]. 电力系统保护与控制, 2021, 49(22): 114-119. YAN L M, LIU Y Q, XU J J, et al. Broken string diagnosis of composite insulator based on Grabcut segmentation and filler area discrimination [J]. Power System Protection and Control, 2021, 49(22): 114-119. [8] ZHAI Y, CHEN R, YANG Q, et al. Insulator fault detection based on spatial morphological features of aerial images [J]. IEEE Access, 2018, 6: 35316-35326. [9] 王银立, 闫斌. 基于视觉的绝缘子“掉串”缺陷的检测与定位[J]. 计算机工程与设计, 2014, 35(2): 583-587. WANG Y L, YAN B. Vision based detection and location for cracked insulator [J]. Computer Engineering and Design, 2014, 35(2): 583-587. [10] 姜云土, 韩军, 丁建, 等. 基于多特征融合的玻璃绝缘子识别及自爆缺陷的诊断[J]. 中国电力, 2017, 50(5): 52-58. JIANG Y T, HAN J, DING J, et al. The identification and diagnosis of self-blast defects of glass insulators based on multi-feature fusion [J]. Electric Power, 2017, 50(5): 52-58. [11] ZHAI Y, WANG D, ZHANG M, et al. Fault detection of insulator based on saliency and adaptive morphology [J]. Multimedia Tools and Applications, 2017, 76(9): 12051-12064. [12] 黄剑航, 王振友. 基于特征融合的深度学习目标检测算法研究[J]. 广东工业大学学报, 2021, 38(4): 52-58. HUANG J H, WANG Z Y. A Research on deep learning object detection algorithm based on feature fusion [J]. Journal of Guangdong University of Technology, 2021, 38(4): 52-58. [13] ZHAO W, XU M, CHENG X, et al. An insulator in transmission lines recognition and fault detection model based on improved faster RCNN [J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-8. [14] 李鑫, 刘帅男, 杨桢, 等. 基于改进Cascade R-CNN的输电线路多目标检测[J]. 电子测量与仪器学报, 2021, 35(10): 24-32. LI X, LIU S N, YANG Z, et al. Multi-target detection of transmission lines based on improved cascade R-CNN [J]. Journal of Electronic Measurement and Instrumentation, 2021, 35(10): 24-32. [15] 赵文清, 张海明, 徐敏夫. 面向改进尺度缩放网络的绝缘子识别[J]. 中国图象图形学报, 2021, 26(11) : 2561-2570. ZHAO W Q, ZHANG H M, XU M F. Insulator recognition based on an improved scale-transferrable network[J] Journal of Image and Graphics, 2021, 26(11) : 2561-2570. [16] LIU J, LIU C, WU Y, et al. An improved method based on deep learning for insulator fault detection in diverse aerial images [J]. Energies, 2021, 14(14): 4365. [17] ZHENG R, ZHU L, HU T, et al. Detection of fault insulator of power transmission line based on region-CNN[C]//2020 35th Youth Academic Annual Conference of Chinese Association of Automation (YAC) . Zhanjiang: IEEE, 2020: 73-76. [18] LIAO G P, YANG G J, TONG W T, et al. Study on power line insulator defect detection via improved faster region-based convolutional neural network[C]//2019 IEEE 7th International Conference on Computer Science and Network Technology (ICCSNT) . Dalian: IEEE, 2019: 262-266. [19] 唐小煜, 黄进波, 冯洁文, 等. 基于 U-net 和 YOLOv4 的绝缘子图像分割与缺陷检测[J]. 华南师范大学学报 (自然科学版) , 2020, 52(6): 15-21. TANG X Y, HUANG J B, FENG J W, et al. Image segmentation and defect detection of insulators based on U-net and YOLOv4 [J]. Journal of South China Normal University (Natural Science Edition) , 2020, 52(6): 15-21. [20] 党宏社, 薛萌, 郭琴. 基于改进的YOLOv4绝缘子掉片故障检测方法[J]. 电瓷避雷器, 2022, 65(1): 211-218. DANG H S, XUE M, GUO Q. Insulator dropout fault detection method based on improved YOLOv4 [J]. Insulators and Surge Arrester, 2022, 65(1): 211-218. [21] ZHANG Q L, YANG Y B. Sa-net: Shuffle attention for deep convolutional neural networks[C]//ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) . [S. l. ]: IEEE, 2021: 2235-2239. [22] MA N, ZHANG X, ZHENG H T, et al. Shufflenet v2: Practical guidelines for efficient cnn architecture design[C]//Proceedings of the European Conference on Computer Vision (ECCV) . Munich: [s. n. ], 2018: 116-131. [23] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(4): 834-848. |
[1] | Zhang Yun, Wang Xiao-dong. A Review and Thinking of Deep Learning with a Restricted Number of Samples [J]. Journal of Guangdong University of Technology, 2022, 39(05): 1-8. |
[2] | Yang Ji-sheng, Zhang Yun, Li Dong. A Residual Neural Network with Voting for 3D Object Detection in Point Clouds [J]. Journal of Guangdong University of Technology, 2022, 39(01): 56-62. |
[3] | Zhang Guo-sheng, Feng Guang, Li Dong. Pose-based Oriented Object Detection Network for Aerial Images [J]. Journal of Guangdong University of Technology, 2021, 38(05): 40-47. |
[4] | Huang Jian-hang, Wang Zhen-you. A Research on Deep Learning Object Detection Algorithm Based on Feature Fusion [J]. Journal of Guangdong University of Technology, 2021, 38(04): 52-58. |
[5] | Ma Shao-peng, Liang Lu, Teng Shao-hua. A Lightweight Hyperspectral Remote Sensing Image Classification Method [J]. Journal of Guangdong University of Technology, 2021, 38(03): 29-35. |
[6] | Xia Hao, Cai Nian, Wang Ping, Wang Han. Magnetic Resonance Image Super-Resolution via Multi-Resolution Learning [J]. Journal of Guangdong University of Technology, 2020, 37(06): 26-31. |
[7] | Zhan Yin-wei, Zhu Bai-wan, Yang Zhuo. Research and Application of Vehicle Color and Model Recognition Algorithm [J]. Journal of Guangdong University of Technology, 2020, 37(04): 9-14. |
[8] | Zhong Ying-chun, Sun Si-yu, Lyu Shuai, Luo Zhi-yong, Xiong Yong-liang, He Hui-qing. Recognition of Bird’s Nest on Transmission Tower in Aerial Image of High-volage Power Line by YOLOv3 Algorithm [J]. Journal of Guangdong University of Technology, 2020, 37(03): 42-48. |
[9] | Zeng Bi-qing, Han Xu-li, Wang Sheng-yu, Xu Ru-yang, Zhou Wu. Sentiment Classification Based on Double Attention Convolutional Neural Network Model [J]. Journal of Guangdong University of Technology, 2019, 36(04): 10-17. |
[10] | Gao Jun-yan, Liu Wen-yin, Yang Zhen-guo. Object Tracking Combined with Attention and Feature Fusion [J]. Journal of Guangdong University of Technology, 2019, 36(04): 18-23. |
[11] | Yang Meng-jun, Su Cheng-yue, Chen Jing, Zhang Jie-xin. Loop Closure Detection for Visual SLAM Using Convolutional Neural Networks [J]. Journal of Guangdong University of Technology, 2018, 35(05): 31-37. |
[12] | Chen Xu, Zhang Jun, Chen Wen-wei, Li Shuo-hao. Convolutional Neural Network Algorithm and Case [J]. Journal of Guangdong University of Technology, 2017, 34(06): 20-26. |
[13] | SHEN Xiao-Min, LI Bao-Jun, SUN Xu, XU Wei-Chao. Large Scale Face Clustering Based on Convolutional Neural Network [J]. Journal of Guangdong University of Technology, 2016, 33(06): 77-84. |
[14] | CHEN Shi-Wen1, 2 , Cai-Nian2, Xiao-Ming-Ming3. Detection of Moving Objects Based on the Gaussian Mixture Model and the Canny Operator [J]. Journal of Guangdong University of Technology, 2011, 28(3): 87-91. |
[15] | CAO Xiao-jun,PAN Bao-chang,ZHENG Sheng-lin,GAN Yan-fen . Motion Object Detection Method Based on the Characteristic Image [J]. Journal of Guangdong University of Technology, 2007, 24(2): 87-89. |
|