Journal of Guangdong University of Technology ›› 2023, Vol. 40 ›› Issue (04): 1-8.doi: 10.12052/gdutxb.220157
• Computer Science and Technology • Next Articles
Wen Wen1, Liu Ying1, Cai Rui-chu1, Hao Zhi-feng1,2
CLC Number:
[1] VLAHOGIANNI E I, KARLAFTIS M G, GOLIAS J C. Short-term traffic forecasting: where we are and where we’re going[J]. Transportation Research Part C:Emerging Technologies, 2014, 43: 3-19. [2] ZHOU Z, WANG Y, XIE X, et al. Foresee urban sparse traffic accidents: a spatiotemporal multi-granularity perspective[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 34(8): 3786-3799. [3] GUO S, LIN Y, FENG N, et al. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting[C]//Proceedings of the AAAI Conference on Artificial Intelligence. California: AAAI Press, 2019: 922-929. [4] WILLIAMS B M, HOEL L A. Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: theoretical basis and empirical results[J]. Journal of Transportation Engineering, 2003, 129(6): 664-672. [5] ZHANG G P. Time series forecasting using a hybrid ARIMA and neural network model[J]. Neurocomputing, 2003, 50: 159-175. [6] YANG B, SUN S, LI J, et al. Traffic flow prediction using LSTM with feature enhancement[J]. Neurocomputing, 2019, 332: 320-327. [7] ZHANG S, ZHENG H, SU H, et al. GACAN: graph attention-convolution-attention networks for traffic forecasting based on multi-granularity time series[EB/OL]. arXiv preprint arXiv: 2110.14331(2021-10-27)[2022-3-25].https://doi.org/10.48550/arXiv.2110.14331. [8] WU Y, TAN H. Short-term traffic flow forecasting with spatial-temporal correlation in a hybrid deep learning framework[EB/OL]. arXiv preprint arXiv: 1612.01022(2016-12-03)[2022-3-25].https://doi.org/10.48550/arXiv.1612.01022 [9] MA X, DAI Z, HE Z, et al. Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction[J]. Sensors, 2017, 17(4): 818. [10] ZHANG J, ZHENG Y, QI D, et al. DNN-based prediction model for spatio-temporal data[C]//Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York: Association for Computing Machinery, 2016, 92: 1-4. [11] ZHANG J, ZHENG Y, QI D. Deep spatio-temporal residual networks for citywide crowd flows prediction[C]//Thirty-first AAAI Conference on Artificial Intelligence. California: AAAI Press, 2017, 31(1): 1655-1661. [12] CHENG X, ZHANG R, ZHOU J, et al. Deeptransport: Learning spatial-temporal dependency for traffic condition forecasting[C]//2018 International Joint Conference on Neural Networks (IJCNN). Rio de Janeiro: IEEE, 2018: 1-8. [13] ALI A, ZHU Y, ZAKARYA M. Exploiting dynamic spatio-temporal graph convolutional neural networks for citywide traffic flows prediction[J]. Neural Networks, 2022, 145: 233-247. [14] DU S D, LI T R, YANG Y, et al. A sequence-to-sequence spatial-temporal attention learning model for urban traffic flow prediction[J]. Journal of Computer Research and Development, 2020, 57(8): 1715-1728. [15] MA C, KANG P, LIU X. Hierarchical gating networks for sequential recommendation[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: Association for Computing Machinery, 2019: 825-833. [16] GOYAL A, LAMB A, HOFFMANN J, et al. Recurrent independent mechanisms[EB/OL]. arXiv preprint arXiv: 1909.10893(2020-11-17)[2022-3-25].https://doi.org/10.48550/arXiv.1909.10893. [17] MA C, DAI G, ZHOU J. Short-term traffic flow prediction for urban road sections based on time series analysis and LSTM_BILSTM method[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(6): 5615-5624. [18] WANG K, SHENG L, GU S, et al. Sequential point cloud upsampling by exploiting multi-scale temporal dependency[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31(12): 4686-4696. |
[1] | Zhong Geng-jun, Li Dong. A Channel-splited Based Dual-branch Block for 3D Point Cloud Processing [J]. Journal of Guangdong University of Technology, 2023, 40(04): 18-23. |
[2] | Jin Yu-kai, Li Zhi-sheng, Ou Yao-chun, Zhang Hua-gang, Zeng Jiang-yi, Chen Bo-chao. Prediction and Comparative Study of PM2.5 Concentration Based on Multi-stage Clustering [J]. Journal of Guangdong University of Technology, 2023, 40(03): 17-24. |
[3] | Liu Dong-ning, Wang Zi-qi, Zeng Yan-jiao, Wen Fu-yan, Wang Yang. Prediction Method of Gene Methylation Sites Based on LSTM with Compound Coding Characteristics [J]. Journal of Guangdong University of Technology, 2023, 40(01): 1-9. |
[4] | Xu Wei-feng, Cai Shu-ting, Xiong Xiao-ming. Visual Inertial Odometry Based on Deep Features [J]. Journal of Guangdong University of Technology, 2023, 40(01): 56-60,76. |
[5] | Liu Hong-wei, Lin Wei-zhen, Wen Zhan-ming, Chen Yan-jun, Yi Min-qi. A MABM-based Model for Identifying Consumers' Sentiment Polarity―Taking Movie Reviews as an Example [J]. Journal of Guangdong University of Technology, 2022, 39(06): 1-9. |
[6] | Zhang Yun, Wang Xiao-dong. A Review and Thinking of Deep Learning with a Restricted Number of Samples [J]. Journal of Guangdong University of Technology, 2022, 39(05): 1-8. |
[7] | Zheng Jia-bi, Yang Zhen-guo, Liu Wen-yin. Marketing-Effect Estimation Based on Fine-grained Confounder Balancing [J]. Journal of Guangdong University of Technology, 2022, 39(02): 55-61. |
[8] | Gary Yen, Li Bo, Xie Sheng-li. An Evolutionary Optimization of LSTM for Model Recovery of Geophysical Fluid Dynamics [J]. Journal of Guangdong University of Technology, 2021, 38(06): 1-8. |
[9] | Lai Jun, Liu Zhen-yu, Liu Sheng-hai. A Small Sample Data Prediction Method Based on Global Data Shuffling [J]. Journal of Guangdong University of Technology, 2021, 38(03): 17-21. |
[10] | Cen Shi-jie, He Yuan-lie, Chen Xiao-cong. A Monocular Depth Estimation Combined with Attention and Unsupervised Deep Learning [J]. Journal of Guangdong University of Technology, 2020, 37(04): 35-41. |
[11] | Zhang Shu, Mo Zan, Liu Jian-hua, Yang Pei-chen, Liu Hong-wei. Multi-granularity Microblog User Interest Portrait Construction Based on NWD Integrated Algorithm [J]. Journal of Guangdong University of Technology, 2020, 37(04): 42-50. |
[12] | Zeng Bi, Ren Wan-ling, Chen Yun-hua. An Unpaired Face Illumination Normalization Method Based on CycleGAN [J]. Journal of Guangdong University of Technology, 2018, 35(05): 11-19. |
[13] | Yang Meng-jun, Su Cheng-yue, Chen Jing, Zhang Jie-xin. Loop Closure Detection for Visual SLAM Using Convolutional Neural Networks [J]. Journal of Guangdong University of Technology, 2018, 35(05): 31-37. |
[14] | Chen Xu, Zhang Jun, Chen Wen-wei, Li Shuo-hao. Convolutional Neural Network Algorithm and Case [J]. Journal of Guangdong University of Technology, 2017, 34(06): 20-26. |
[15] | Liu Zhen-yu, Li Jia-jun, Wang Kun. A Fingerprint Matching Localization Method Based on Deep Auto Encoder [J]. Journal of Guangdong University of Technology, 2017, 34(05): 15-21. |
|