Journal of Guangdong University of Technology ›› 2024, Vol. 41 ›› Issue (01): 19-26,40.doi: 10.12052/gdutxb.230031
• Smart Medical • Previous Articles Next Articles
Wu Ju-hua, Li Jun-feng, Tao Lei
CLC Number:
[1] WESTER K, JONSSON A K, SPIGSET O, et al. Incidence of fatal adverse drug reactions: a population based study [J]. British Journal of Clinical Pharmacology, 2008, 65(4): 573-579. [2] COCOS A, FIKS A G, MASINO A J. Deep learning for pharmacovigilance: recurrent neural network architectures for labeling adverse drug reactions in Twitter posts [J]. Journal of the American Medical Informatics Association, 2017, 24(4): 813-821. [3] JONATHAN H W, TERRY M, JAN D H. Cost of prescription drug-related morbidity and mortality [J]. Annals of Pharmacotherapy, 2018, 52(9): 829-837. [4] 朱笑笑, 杨尊琦, 刘婧. 基于Bi-LSTM和CRF的药品不良反应抽取模型构建[J]. 数据分析与知识发现, 2019, 3(2): 90-97. ZHU X X, YANG Z Q, LIU J. Construction of an adverse drug reaction extraction model based on Bi-LSTM and CRF [J]. Data Analysis and Knowledge Discovery, 2019, 3(2): 90-97. [5] 国家药品不良反应监测年度报告(2018年) [J]. 中国药物评价, 2019, 36(6) : 476-480 [6] 郭凯. 基于深度学习和语义分析的药物不良反应发现[D]. 大连: 大连理工大学, 2017. [7] 朱嘉静. 基于机器学习的药物不良反应关键问题研究[D]. 成都: 电子科技大学, 2020. [8] LEE C Y, CHEN Y P. Machine learning on adverse drug reactions for pharmacovigilance [J]. Drug Discovery Today, 2019, 24(7): 1332-1343. [9] LEE C Y, CHEN Y P. Prediction of drug adverse events using deep learning in pharmaceutical discovery [J]. Briefings in Bioinformatics, 2020, 22(2): 1884-1901. [10] World Health Organization. International drug monitoring, the role of national centres: report of WHO Technical Group[R]. Geneva: WHO, 1972. [11] RING J, BROCKOW K. Adverse drug reactions: mechanisms and assessment [J]. European Surgical Research, 2002, 34(1-2): 170-175. [12] 谈志远, 赵荣生. 人工智能技术在药物不良反应监测与上报中应用的研究进展[J]. 临床药物治疗杂志, 2019, 17(2): 23-27. TAN Z Y, ZHAO R S. Progress of studies of artificial intelligence in surveillance and report of adverse drug reactions [J]. Clinical Medication Journal, 2019, 17(2): 23-27. [13] 赵霞, 陈瑶, 廖俊, 等. 基于医药大数据的药品不良反应信号挖掘探讨[J]. 中华医院管理杂志, 2017, 33(5): 4. ZHAO X, CHEN Y, LIAO J, et al. Signal mining for adverse drug reactions based on healthcare big data: methodology and applications [J]. Chinese Journal of Hospital Administration, 2017, 33(5): 4. [14] VOSS E A, BOYCE RD, RYAN P B, et al. Accuracy of an automated knowledge base for identifying drug adverse reactions [J]. Journal of Biomedical Informatics, 2017, 66: 72-81. [15] 陈瑶, 吴红, 葛卫红, 等. 基于深度学习模型的我国药品不良反应报告实体关系抽取研究[J]. 中国药科大学学报, 2019, 50(6): 753-759. CHEN Y, WU H, GE W H, et al. Research on entity relation extraction of Chinese adverse drug reaction reports based on deep learning method [J]. Journal of China Pharmaceutical University, 2019, 50(6): 753-759. [16] 申晨, 林鸿飞. 基于图嵌入的社交媒体药物不良反应事件检测方法[J]. 大连理工大学学报, 2020, 60(5): 547-554. SHEN C, LIN H F. Detection method of adverse drug events from social media based on graph embedding [J]. Journal of Dalian University of Technology, 2020, 60(5): 547-554. [17] 仲雨乐, 马诗雯, 陆豪杰, 等. 基于机器学习的药品不良反应实体识别研究综述[J]. 软件工程, 2022, 25(8): 1-6. ZHONG Y L, MA S W, LU H J, et al. Survey of research on entity recognition of adverse drug reaction based on machine learning [J]. Software Engineering, 2022, 25(8): 1-6. [18] LIU M, WU Y H, CHEN Y K, et al. Large-scale prediction of adverse drug reactions using chemical, biological, and phenotypic properties of drugs [J]. Journal of the American Medical Informatics Association, 2012, 19(e1): e28-35. [19] VILAR S, HRIPCSAK G. The role of drug profiles as similarity metrics: applications to repurposing, adverse effects detection and drug-drug interactions [J]. Briefings in Bioinformatics, 2017, 18(4): 670-681. [20] MUNOZ E, NOVACEK V, VANDENBUSSCHE P Y. Using drug similarities for discovery of possible adverse reactions[J]. Amia Annual Symposium Proceedings, 2016, 2016: 924-933 [21] WANG C S, LIN P J, CHENG C L, et al. Detecting potential adverse drug reactions using a deep neural network model [J]. Journal of Medical Internet Research, 2019, 21(2): e11016. [22] DAI Y F, WANG S P, NEAL N, et al. A survey on knowledge graph embedding: approaches, applications and benchmarks [J]. Electronics, 2020, 9(5): 750-778. [23] ZENG X X, TU X Q, LIU Y S, et al. Toward better drug discovery with knowledge graph[J]. Current Opinion in Structural Biology, 2022, 72: 114-126 [24] SHTAR G, ROKACH L, SHAPIRA B. Detecting drug-drug interactions using artificial neural networks and classic graph similarity measures [J]. PloS One, 2019, 14(8): e0219796. [25] JOSHI P, MASILAMANI V, MUKHERJEE A. A knowledge graph embedding based approach to predict the adverse drug reactions using a deep neural network [J]. Journal of Biomedical Informatics, 2022, 132: 104122-104131. [26] ZHANG F, SUN B, DIAO X L, et al. Prediction of adverse drug reactions based on knowledge graph embedding [J]. BMC Medical Informatics and Decision Making, 2021, 21(1): 38-48. [27] WANG M, MA X Y, SI J W, et al. Adverse drug reaction discovery using a tumor-biomarker knowledge graph[J]. Frontiers in Genetics, 2021, 11: 625659 [28] DEY S, LUO H, FOKOUE A, et al. Predicting adverse drug reactions through interpretable deep learning framework [J]. BMC Bioinformatics, 2018, 19(Suppl 21): 476-488. [29] BEAN D M, WU H H, IQBAL E, et al. Knowledge graph prediction of unknown adverse drug reactions and validation in electronic health records [J]. Scientific Reports, 2017, 7(1): 16416. [30] WISHART D S, FEUNANG Y D, GUO A C, et al. DrugBank 5.0: a major update to the DrugBank database for 2018 [J]. Nucleic Acids Research, 2018, 46(D1): D1074-D1082. [31] KUHN M, LETUNIC I, JENSEN L J, et al. The SIDER database of drugs and side effects [J]. Nucleic Acids Research, 2016, 44(D1): D1075-D1084. [32] YANG B S, YIH W T, HE X D, et al. Embedding entities and relations for learning and inference in knowledge bases[EB/OL]. arXiv: 1412.6575 (2015-08-29) [2023-02-22]. https://doi.org/10.48550/arXiv.1412.6575. [33] NICKEL M, LORENZO R, TOMASO P. Holographic embeddings of knowledge graphs[C] //Thirtieth AAAI Conference on Artificial Intelligence. California: AAAI. 2016: 1955-1961. [34] 高飞萌, 宋智慧. 艾司奥美拉唑镁肠溶片致肾损伤[J]. 药物不良反应杂志, 2020, 22(6): 381-382. GAO F M, SONG Z H. Kidney injury caused by esomeprazole magnesium enteric-coated tablets [J]. Adverse Drug Reactions Journal, 2020, 22(6): 381-382. [35] DHAKRIT R, IVES A L, HARRIOTT N G, et al. Comparative incidence of acute kidney injury in patients on vancomycin therapy in combination with cefepime, piperacillin-tazobactam or meropenem [J]. Journal of Chemotherapy (Florence, Italy) , 2021, 34(2): 1-7. [36] NIITSU T, HAYASHI T, UCHIDA J, et al. Drug-induced kidney injury caused by osimertinib: report of a rare case [J]. Nephron, 2021, 146(1): 58-63. [37] WAKABAYASHI K, YAMAMOTO S, HARA S, et al. Nivolumab-induced membranous nephropathy in a patient with stage IV lung adenocarcinoma [J]. CEN Case Rep, 2022, 11(2): 171-176. [38] 苏伟, 苏培. 碘海醇注射液致患者获得性急性肾功能衰竭的不良反应[J]. 中国生化药物杂志, 2016, 36(10): 92-94. SU W, SU P. Effect of adverse reaction of acquired acute renal failure caused by iohexol injection [J]. Chinese Journal of Biochemical and Pharmaceuticals, 2016, 36(10): 92-94. |
[1] | Liang Yu-chen, Cai Nian, Ouyang Wen-sheng, Xie Yi-ying, Wang Ping. CT Diagnosis of Chronic Obstructive Pulmonary Disease Based on Slice Correlation Information [J]. Journal of Guangdong University of Technology, 2024, 41(01): 27-33. |
[2] | Wen Wen, Liu Ying, Cai Rui-chu, Hao Zhi-feng. Spatial-temporal Deep Regression Model for Multi-granularity Traffic Flow Prediction [J]. Journal of Guangdong University of Technology, 2023, 40(04): 1-8. |
[3] | Zhong Geng-jun, Li Dong. A Channel-splited Based Dual-branch Block for 3D Point Cloud Processing [J]. Journal of Guangdong University of Technology, 2023, 40(04): 18-23. |
[4] | Jin Yu-kai, Li Zhi-sheng, Ou Yao-chun, Zhang Hua-gang, Zeng Jiang-yi, Chen Bo-chao. Prediction and Comparative Study of PM2.5 Concentration Based on Multi-stage Clustering [J]. Journal of Guangdong University of Technology, 2023, 40(03): 17-24. |
[5] | Liu Dong-ning, Wang Zi-qi, Zeng Yan-jiao, Wen Fu-yan, Wang Yang. Prediction Method of Gene Methylation Sites Based on LSTM with Compound Coding Characteristics [J]. Journal of Guangdong University of Technology, 2023, 40(01): 1-9. |
[6] | Xu Wei-feng, Cai Shu-ting, Xiong Xiao-ming. Visual Inertial Odometry Based on Deep Features [J]. Journal of Guangdong University of Technology, 2023, 40(01): 56-60,76. |
[7] | Liu Hong-wei, Lin Wei-zhen, Wen Zhan-ming, Chen Yan-jun, Yi Min-qi. A MABM-based Model for Identifying Consumers' Sentiment Polarity―Taking Movie Reviews as an Example [J]. Journal of Guangdong University of Technology, 2022, 39(06): 1-9. |
[8] | Zhang Yun, Wang Xiao-dong. A Review and Thinking of Deep Learning with a Restricted Number of Samples [J]. Journal of Guangdong University of Technology, 2022, 39(05): 1-8. |
[9] | Zheng Jia-bi, Yang Zhen-guo, Liu Wen-yin. Marketing-Effect Estimation Based on Fine-grained Confounder Balancing [J]. Journal of Guangdong University of Technology, 2022, 39(02): 55-61. |
[10] | Gary Yen, Li Bo, Xie Sheng-li. An Evolutionary Optimization of LSTM for Model Recovery of Geophysical Fluid Dynamics [J]. Journal of Guangdong University of Technology, 2021, 38(06): 1-8. |
[11] | Lai Jun, Liu Zhen-yu, Liu Sheng-hai. A Small Sample Data Prediction Method Based on Global Data Shuffling [J]. Journal of Guangdong University of Technology, 2021, 38(03): 17-21. |
[12] | Cen Shi-jie, He Yuan-lie, Chen Xiao-cong. A Monocular Depth Estimation Combined with Attention and Unsupervised Deep Learning [J]. Journal of Guangdong University of Technology, 2020, 37(04): 35-41. |
[13] | Zeng Bi, Ren Wan-ling, Chen Yun-hua. An Unpaired Face Illumination Normalization Method Based on CycleGAN [J]. Journal of Guangdong University of Technology, 2018, 35(05): 11-19. |
[14] | Yang Meng-jun, Su Cheng-yue, Chen Jing, Zhang Jie-xin. Loop Closure Detection for Visual SLAM Using Convolutional Neural Networks [J]. Journal of Guangdong University of Technology, 2018, 35(05): 31-37. |
[15] | Chen Xu, Zhang Jun, Chen Wen-wei, Li Shuo-hao. Convolutional Neural Network Algorithm and Case [J]. Journal of Guangdong University of Technology, 2017, 34(06): 20-26. |
|