Journal of Guangdong University of Technology ›› 2024, Vol. 41 ›› Issue (04): 114-121.doi: 10.12052/gdutxb.230103
• Computer Science and Technology • Previous Articles Next Articles
Luo Cheng, Zhang Jun
CLC Number:
[1] DONOHO D L. Compressed sensing [J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. [2] CANDES E J, WAKIN M B. An introduction to compressive sampling [J]. IEEE Signal Processing Magazine, 2008, 25(2): 21-30. [3] LUSTIG M, DONOHO D L, SANTOS J M, et al. Compressed sensing MRI [J]. IEEE Signal Processing Magazine, 2008, 25(2): 72-82. [4] ENDER J H G. On compressive sensing applied to radar [J]. Signal Processing, 2010, 90(5): 1402-1414. [5] ZHENG S, CHEN J, ZHANG X P, et al. A new multihypothesis-based compressed video sensing reconstruction system [J]. IEEE Transactions on Multimedia, 2021, 23: 3577-3589. [6] KULKARNI K, LOHIT S, TURAGA P, et al. Reconnet: non-iterative reconstruction of images from compressively sensed measurements[C]// IEEE Conference on Computer Vision & Pattern Recognition (CVPR) . Las Vegas: IEEE, 2016: 449-458. [7] SHI W Z, JIANG F, LIU S H, et al. Image compressed sensing using convolutional neural network [J]. IEEE Transactions on Image Processing, 2019, 29: 375-388. [8] SHI W Z, JIANG F, LIU S H, et al. Scalable convolutional neural network for image compressed sensing[C]// IEEE Conference on Computer Vision and Pattern Recognition (CVPR) . Long Beach: IEEE, 2019: 12282-12291. [9] BLUMENSATH T, DAVIES M E. Iterative hard thresholding for compressed sensing [J]. Applied and Computational Harmonic Analysis, 2009, 27(3): 265-274. [10] ZHANG J, GHANEM B. Istanet: interpretable optimization-inspired deep network for image compressive sensing[C]// IEEE Conference on Computer Vision and Pattern Recognition (CVPR) . SaltLake City: IEEE, 2018: 1828-1837. [11] YOU D, XIE J F, ZHANG J. Ista-net++: flexible deep unfoldingnetwork for compressive sensing[C]// IEEE International Conference on Multimedia and Expo (ICME) . Shenzhen: IEEE, 2021: 1-6. [12] YU Y, WANG B, ZHANG L M. Saliency-based compressive sampling for image signals [J]. IEEE Signal Processing Letters, 2010, 17(11): 973-976. [13] ZHOU S W, HE Y, LIU Y H, et al. Multi-channel deep networksfor block-based image compressive sensing [J]. IEEE Transactionson Multimedia, 2021, 23: 2627-2640. [14] CANDES E J. The restricted isometry property and its implications for compressed sensing [J]. Comptes Rendus Mathematique, 2008, 346: 589-592. [15] QIU C X, YUE T, HU X M. Adaptive and cascaded compressivesensing[EB/OL]. arXiv: 2203.10779 (2022-3-21) [2023-8-3]. https://doi.org/10.48550/arXiv.2203.10779. [16] DONOHO D L, MALEKI A, MONTANARI A. Message-passing algorithms for compressed sensing [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(45): 18914-18919. [17] LI C, YIN W, JIANG H, et al. An efficient augmented lagrangian method with applications to total variation minimization [J]. Computational Optimization and Applications, 2013, 56(3): 507-530. [18] ZHANG J, ZHAO C, GAO W. Optimization-inspired compact deep compressive sensing [J]. IEEE Journal of Selected Topics in Signal Processing, 2020, 14(4): 765-774. [19] ZHANG Z H, LIU Y P, LIU J, et al. Ampnet: denoising-based deep unfolding for compressive image sensing [J]. IEEE Transactions on Image Processing, 2021, 30: 1487-1500. [20] YOU D, ZHANG J, XIE J F, et al. Coast: controllable arbitrary sampling network for compressive sensing [J]. IEEE Transactions on Image Processing, 2021, 30: 6066-6080. [21] CHEN W J, YANG C L, YANG X. Fsoinet: feature-space optimi-zation-inspired network for image compressive sensing[C]// IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Singapore: IEEE, 2022: 2460-2464. [22] RONNEBERGER O, FISCHER P, BROX T. U-net: convolutionalnetworks for biomedical image segmentation[C]// International Conference on Medical Image Computing and Computer Assisted Intervention. Munich: Springer, 2015: 234-241. [23] LI X, WANG W, HU X, et al. Selective kernel networks[C]// IEEE Conference on Computer Vision & Pattern Recognition. LongBeach: IEEE, 2019: 510-519. |
[1] | Liang Yu-chen, Cai Nian, Ouyang Wen-sheng, Xie Yi-ying, Wang Ping. CT Diagnosis of Chronic Obstructive Pulmonary Disease Based on Slice Correlation Information [J]. Journal of Guangdong University of Technology, 2024, 41(01): 27-33.doi: 10.12052/gdutxb.230103 |
[2] | Wu Ju-hua, Li Jun-feng, Tao Lei. Prediction of Adverse Drug Reactions Based on Knowledge Graph Embedding and Deep Learning [J]. Journal of Guangdong University of Technology, 2024, 41(01): 19-26,40.doi: 10.12052/gdutxb.230103 |
[3] | Wen Wen, Liu Ying, Cai Rui-chu, Hao Zhi-feng. Spatial-temporal Deep Regression Model for Multi-granularity Traffic Flow Prediction [J]. Journal of Guangdong University of Technology, 2023, 40(04): 1-8.doi: 10.12052/gdutxb.230103 |
[4] | Zhong Geng-jun, Li Dong. A Channel-splited Based Dual-branch Block for 3D Point Cloud Processing [J]. Journal of Guangdong University of Technology, 2023, 40(04): 18-23.doi: 10.12052/gdutxb.230103 |
[5] | Jin Yu-kai, Li Zhi-sheng, Ou Yao-chun, Zhang Hua-gang, Zeng Jiang-yi, Chen Bo-chao. Prediction and Comparative Study of PM2.5 Concentration Based on Multi-stage Clustering [J]. Journal of Guangdong University of Technology, 2023, 40(03): 17-24.doi: 10.12052/gdutxb.230103 |
[6] | Liu Dong-ning, Wang Zi-qi, Zeng Yan-jiao, Wen Fu-yan, Wang Yang. Prediction Method of Gene Methylation Sites Based on LSTM with Compound Coding Characteristics [J]. Journal of Guangdong University of Technology, 2023, 40(01): 1-9.doi: 10.12052/gdutxb.230103 |
[7] | Xu Wei-feng, Cai Shu-ting, Xiong Xiao-ming. Visual Inertial Odometry Based on Deep Features [J]. Journal of Guangdong University of Technology, 2023, 40(01): 56-60,76.doi: 10.12052/gdutxb.230103 |
[8] | Liu Hong-wei, Lin Wei-zhen, Wen Zhan-ming, Chen Yan-jun, Yi Min-qi. A MABM-based Model for Identifying Consumers' Sentiment Polarity―Taking Movie Reviews as an Example [J]. Journal of Guangdong University of Technology, 2022, 39(06): 1-9.doi: 10.12052/gdutxb.230103 |
[9] | Zhang Yun, Wang Xiao-dong. A Review and Thinking of Deep Learning with a Restricted Number of Samples [J]. Journal of Guangdong University of Technology, 2022, 39(05): 1-8.doi: 10.12052/gdutxb.230103 |
[10] | Zheng Jia-bi, Yang Zhen-guo, Liu Wen-yin. Marketing-Effect Estimation Based on Fine-grained Confounder Balancing [J]. Journal of Guangdong University of Technology, 2022, 39(02): 55-61.doi: 10.12052/gdutxb.230103 |
[11] | Gary Yen, Li Bo, Xie Sheng-li. An Evolutionary Optimization of LSTM for Model Recovery of Geophysical Fluid Dynamics [J]. Journal of Guangdong University of Technology, 2021, 38(06): 1-8.doi: 10.12052/gdutxb.230103 |
[12] | Lai Jun, Liu Zhen-yu, Liu Sheng-hai. A Small Sample Data Prediction Method Based on Global Data Shuffling [J]. Journal of Guangdong University of Technology, 2021, 38(03): 17-21.doi: 10.12052/gdutxb.230103 |
[13] | Cen Shi-jie, He Yuan-lie, Chen Xiao-cong. A Monocular Depth Estimation Combined with Attention and Unsupervised Deep Learning [J]. Journal of Guangdong University of Technology, 2020, 37(04): 35-41.doi: 10.12052/gdutxb.230103 |
[14] | Zeng Bi, Ren Wan-ling, Chen Yun-hua. An Unpaired Face Illumination Normalization Method Based on CycleGAN [J]. Journal of Guangdong University of Technology, 2018, 35(05): 11-19.doi: 10.12052/gdutxb.230103 |
[15] | Yang Meng-jun, Su Cheng-yue, Chen Jing, Zhang Jie-xin. Loop Closure Detection for Visual SLAM Using Convolutional Neural Networks [J]. Journal of Guangdong University of Technology, 2018, 35(05): 31-37.doi: 10.12052/gdutxb.230103 |
|