Journal of Guangdong University of Technology ›› 2025, Vol. 42 ›› Issue (1): 42-50.doi: 10.12052/gdutxb.230167
• Smart Medical • Previous Articles
Wang Biao1, Zhong Yingchun1, Luo Weishi2, Zhu Shuang3, Zeng Pujun4
CLC Number:
[1] ZIHNA G, TOPUZ B, GÜNAL G, et al. Preparation of hybrid meniscal constructs using hydrogels and acellular matrices [J]. Journal of Biomaterials Science, Polymer Edition, 2023, 34(5): 587-611. [2] PRENDERGAST M E, HEO S J, MAUCK R L, et al. Suspension bath bioprinting and maturation of anisotropic meniscal constructs [J]. Biofabrication, 2023, 15(3): 035003. [3] BILGEN B, JAYASURIYA C T, OWENS B D. Current concepts in meniscus tissue engineering and repair [J]. Advanced Healthcare Materials, 2018, 7(11): 1701407. [4] 朱爽, 梁敏娟, 赖剑强. 基于Micro-CT技术的半月板微观结构分析和三维重建[J]. 现代医用影像学, 2021, 30(8): 1432-1434. [5] KARJALAINEN V P, KESTILÄ I, FINNILÄ M A, et al. Quantitative three-dimensional collagen orientation analysis of human meniscus posterior horn in health and osteoarthritis using micro-computed tomography [J]. Osteoarthritis and Cartilage, 2021, 29(5): 762-772. [6] PETERSEN W, TILLMANN B. Collagenous fibril texture of the human knee joint menisci [J]. Anatomy and Embryology, 1998, 197: 317-324. [7] FOX A J S, BEDI A, RODEO S A. The basic science of human knee menisci: structure, composition, and function [J]. Sports Health, 2012, 4(4): 340-351. [8] TACK A, MUKHOPADHYAY A, ZACHOW S. Knee menisci segmentation using convolutional neural networks: data from the osteoarthritis initiative [J]. Osteoarthritis and Cartilage, 2018, 26(5): 680-688. [9] SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation [J]. IEEE Trans Pattern Anal Mach Intell, 2017, 39(4): 640-651. [10] RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[EB/OL]. arXiv: 1505.04597 (2015-05-18) [2023-09-15]. https://doi.org/10.48550/arXiv.1505.04597. [11] STEGMANN H, WERKMEISTER R M, PFISTER M, et al. Deep learning segmentation for optical coherence tomography measurements of the lower tear meniscus [J]. Biomedical Optics Express, 2020, 11(3): 1539-1554. [12] CHEN J H, LU Y Y, YU Q H, et al. TransUNet: Transformers make strong encoders for medical image segmentation[EB/OL]. arXiv: 2102.04346 (2021-02-08) [2023-09-15]. https://doi.org/10.48550/arXiv.2102.04306. [13] FEDOROV A, BEICHEL R, KALPATHY-CRAMER J, et al. 3D Slicer as an image computing platform for the quantitative imaging network [J]. Magnetic Resonance Imaging, 2012, 30(9): 1323-1341. [14] ZHU S, GE T, XIANG J P, et al. Microstructure analysis and reconstruction of a meniscus [J]. Orthopaedic Surgery, 2021, 13(1): 306-313. [15] RUSSELL B C, TORRALBA A, MURPHT K P, et al. LabelMe: a database and web-based tool for image annotation [J]. International Journal of Computer Vision, 2008, 77: 157-173. [16] WOODMASS J M, LAPRADE R F, SGAGLIONE N A, et al. Meniscal repair: reconsidering indications, techniques, and biologic augmentation [J]. The Journal of Bone and Joint surgery. American Volume, 2017, 99(14): 1222-1231.SS. [17] WU K, PENG H, CHEN M, et al. Rethinking and improving relative position encoding for vision transformer[EB/OL]. arXiv: 2107.14222 (2021-07-29) [2023-09-15]. https://doi.org/10.48550/arXiv.2107.14222. [18] SHAW P, USZKOREIT J, VASWANI A. Self-attention with relative position representations[EB/OL]. arXiv: 1803.02155 (2018-04-12) [2023-09-15]. https://doi.org/10.48550/arXiv.1803.02155. [19] MILLETARI F, NAVAB N, AHMADI S A. V-Net: fully convolutional neural networks for volumetric medical image segmentation[EB/OL]. arXiv: 1606.04797 (2016-06-15) [2023-09-15]. https://doi.org/10.48550/arXiv.1606.04797. [20] ROTH H R, ODA H, ZHOU X, et al. An application of cascaded 3D fully convolutional networks for medical image segmentation [J]. Computerized Medical Imaging and Graphics, 2018, 66: 90-99. [21] 孙思语, 钟映春, 郑海阳, 等. MicroCT图像中周围神经束轮廓的建模[J]. 计算机仿真, 2022, 39(1): 258-262. SUN S Y, ZHONG Y C, ZHENG H Y, et al. Modeling of contour of peripheral fasciculi in MicroCT images [J]. Computer Simulation, 2022, 39(1): 258-262. [22] GOMALAVALLI R, MUTTAN S, SAI P M V. Boundary detection of renal using contour segmentation [J]. International Journal of Biomedical Engineering and Technology, 2018, 28(1): 53-66. |
[1] | Wang Ying, Cai Shu-ting, Xiong Xiao-ming. A Hotspot Detector Based on Active Learning and Visual State Space Models [J]. Journal of Guangdong University of Technology, 2024, 41(06): 45-51.doi: 10.12052/gdutxb.230167 |
[2] | Luo Cheng, Zhang Jun. Adaptive Sampling and Memory-augmented Compressed Sensing Algorithm Based on Deep Learning [J]. Journal of Guangdong University of Technology, 2024, 41(04): 114-121.doi: 10.12052/gdutxb.230167 |
[3] | Liang Yu-chen, Cai Nian, Ouyang Wen-sheng, Xie Yi-ying, Wang Ping. CT Diagnosis of Chronic Obstructive Pulmonary Disease Based on Slice Correlation Information [J]. Journal of Guangdong University of Technology, 2024, 41(01): 27-33.doi: 10.12052/gdutxb.230167 |
[4] | Wu Ju-hua, Li Jun-feng, Tao Lei. Prediction of Adverse Drug Reactions Based on Knowledge Graph Embedding and Deep Learning [J]. Journal of Guangdong University of Technology, 2024, 41(01): 19-26,40.doi: 10.12052/gdutxb.230167 |
[5] | Wen Wen, Liu Ying, Cai Rui-chu, Hao Zhi-feng. Spatial-temporal Deep Regression Model for Multi-granularity Traffic Flow Prediction [J]. Journal of Guangdong University of Technology, 2023, 40(04): 1-8.doi: 10.12052/gdutxb.230167 |
[6] | Zhong Geng-jun, Li Dong. A Channel-splited Based Dual-branch Block for 3D Point Cloud Processing [J]. Journal of Guangdong University of Technology, 2023, 40(04): 18-23.doi: 10.12052/gdutxb.230167 |
[7] | Jin Yu-kai, Li Zhi-sheng, Ou Yao-chun, Zhang Hua-gang, Zeng Jiang-yi, Chen Bo-chao. Prediction and Comparative Study of PM2.5 Concentration Based on Multi-stage Clustering [J]. Journal of Guangdong University of Technology, 2023, 40(03): 17-24.doi: 10.12052/gdutxb.230167 |
[8] | Liu Dong-ning, Wang Zi-qi, Zeng Yan-jiao, Wen Fu-yan, Wang Yang. Prediction Method of Gene Methylation Sites Based on LSTM with Compound Coding Characteristics [J]. Journal of Guangdong University of Technology, 2023, 40(01): 1-9.doi: 10.12052/gdutxb.230167 |
[9] | Xu Wei-feng, Cai Shu-ting, Xiong Xiao-ming. Visual Inertial Odometry Based on Deep Features [J]. Journal of Guangdong University of Technology, 2023, 40(01): 56-60,76.doi: 10.12052/gdutxb.230167 |
[10] | Liu Hong-wei, Lin Wei-zhen, Wen Zhan-ming, Chen Yan-jun, Yi Min-qi. A MABM-based Model for Identifying Consumers' Sentiment Polarity―Taking Movie Reviews as an Example [J]. Journal of Guangdong University of Technology, 2022, 39(06): 1-9.doi: 10.12052/gdutxb.230167 |
[11] | Zhang Yun, Wang Xiao-dong. A Review and Thinking of Deep Learning with a Restricted Number of Samples [J]. Journal of Guangdong University of Technology, 2022, 39(05): 1-8.doi: 10.12052/gdutxb.230167 |
[12] | Zheng Jia-bi, Yang Zhen-guo, Liu Wen-yin. Marketing-Effect Estimation Based on Fine-grained Confounder Balancing [J]. Journal of Guangdong University of Technology, 2022, 39(02): 55-61.doi: 10.12052/gdutxb.230167 |
[13] | Gary Yen, Li Bo, Xie Sheng-li. An Evolutionary Optimization of LSTM for Model Recovery of Geophysical Fluid Dynamics [J]. Journal of Guangdong University of Technology, 2021, 38(06): 1-8.doi: 10.12052/gdutxb.230167 |
[14] | Lai Jun, Liu Zhen-yu, Liu Sheng-hai. A Small Sample Data Prediction Method Based on Global Data Shuffling [J]. Journal of Guangdong University of Technology, 2021, 38(03): 17-21.doi: 10.12052/gdutxb.230167 |
[15] | Cen Shi-jie, He Yuan-lie, Chen Xiao-cong. A Monocular Depth Estimation Combined with Attention and Unsupervised Deep Learning [J]. Journal of Guangdong University of Technology, 2020, 37(04): 35-41.doi: 10.12052/gdutxb.230167 |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 100
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 102
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|