Journal of Guangdong University of Technology ›› 2024, Vol. 41 ›› Issue (06): 45-51.doi: 10.12052/gdutxb.240114
• Integrated Circuit Science and Engineering • Previous Articles
Wang Ying1, Cai Shu-ting2, Xiong Xiao-ming2
CLC Number:
[1] PAN D Z, YU B, GAO J R. Design for manufacturing with emerging nanolithography[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2013, 32(10): 1453-1472. [2] LIU Y, TIAN Y J, ZHAO Y Z, et al. VMamba: visual state space model[EB/OL]. arXiv: 2401.10166(2024-01-18) [2024-10-10]. https://doi.org//10.48550/arXiv.2401.10166. [3] REN P Z, XIAO Y, CHANG X J, et al. A survey of deep active learning[J]. Association for Computing Machinery, 2021, 54(9): 1-40. [4] GUPTA P, KAHNG A B, NAKAGAWA S, et al. Lithography simulation-based full-chip design analyses[C] //Design and Process Integration for Microelectronic Manufacturing IV. San Jose: SPIE, 2006: 277-284. [5] KIM J, FAN M. Hotspot detection on post-OPC layout using full-chip simulation-based verification tool: a case study with aerial image simulation[C] //23rd Annual BACUS Symposium on Photomask Technology. Monterey: SPIE, 2003: 919-925. [6] TSENG S S-E, CHANG W C, JIANG I H-R, et al. Efficient search of layout hotspot patterns for matching SEM images using multilevel pixelation[C] //Optical Microlithography XXXII. San Jose: SPIE, 2019: 51-58. [7] WEN W Y, LI J C, LIN S Y, et al. A fuzzy-matching model with grid reduction for lithography hotspot detection[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2014, 33(11): 1671-1680. [8] YU Y T, CHAN Y C, SINHA S, et al. Accurate process-hotspot detection using critical design rule extraction[C] //Proceedings of the 49th Annual Design Automation Conference. New York: ACM, 2012: 1167-1172. [9] GENG H, YANG H Y, ZHANG L, et al. Hotspot detection via attention-based deep layout metric learning[C] //Proceedings of the 39th International Conference on Computer-Aided Design. New York: ACM, 2020: 1-8. [10] JIANG Y Y, YANG F, ZHU H L, et al. Efficient layout hotspot detection via binarized residual neural network[C] //Proceedings of the 56th Annual Design Automation Conference 2019. New York: ACM, 2019: 1-6. [11] SUN S Y, JIANG Y Y, YANG F, et al. Efficient hotspot detection via graph neural network[C] //2022 Design, Automation & Test in Europe Conference & Exhibition (DATE) . Antwerp: IEEE, 2022: 1233-1238. [12] GAL Y, GHAHRAMANI Z. Dropout as a bayesian approximation: representing model uncertainty in deep learning[C] //international conference on machine learning. New York: PMLR, 2016: 1050-1059. . [13] LIN J H, Divergence measures based on the Shannon entropy[J]. IEEE Transactions on Information theory, 1991, 37(1): 145-151. [14] HOWARD A G, ZHU M L, CHEN B, et al. Mobilenets: efficient convolutional neural networks for mobile vision applications[EB/OL]. arXiv: 1704.04861(2017-04-17) [2024-10-10]. [15] TORRES J A. ICCAD-2012 CAD contest in fuzzy pattern matching for physical verification and benchmark suite[C] //Proceedings of the International Conference on Computer-Aided Design. New York: ACM, 2012: 349-350. [16] YANG H Y, SU J, ZOU Y, et al. Layout hotspot detection with feature tensor generation and deep biased learning[C] //Proceedings of the 54th Annual Design Automation Conference 2017. New York: ACM, 2017: 1-6. [17] CHEN Y Y, WU Y W, WANG J Y, et al. LLM-HD: layout language model for hotspot detection with GDS semantic encoding[C] //Proceedings of the 61th Annual Design Automation Conference 2024. New York: ACM, 2024: 1-6. |
[1] | Luo Cheng, Zhang Jun. Adaptive Sampling and Memory-augmented Compressed Sensing Algorithm Based on Deep Learning [J]. Journal of Guangdong University of Technology, 2024, 41(04): 114-121.doi: 10.12052/gdutxb.240114 |
[2] | Liang Yu-chen, Cai Nian, Ouyang Wen-sheng, Xie Yi-ying, Wang Ping. CT Diagnosis of Chronic Obstructive Pulmonary Disease Based on Slice Correlation Information [J]. Journal of Guangdong University of Technology, 2024, 41(01): 27-33.doi: 10.12052/gdutxb.240114 |
[3] | Wu Ju-hua, Li Jun-feng, Tao Lei. Prediction of Adverse Drug Reactions Based on Knowledge Graph Embedding and Deep Learning [J]. Journal of Guangdong University of Technology, 2024, 41(01): 19-26,40.doi: 10.12052/gdutxb.240114 |
[4] | Wen Wen, Liu Ying, Cai Rui-chu, Hao Zhi-feng. Spatial-temporal Deep Regression Model for Multi-granularity Traffic Flow Prediction [J]. Journal of Guangdong University of Technology, 2023, 40(04): 1-8.doi: 10.12052/gdutxb.240114 |
[5] | Zhong Geng-jun, Li Dong. A Channel-splited Based Dual-branch Block for 3D Point Cloud Processing [J]. Journal of Guangdong University of Technology, 2023, 40(04): 18-23.doi: 10.12052/gdutxb.240114 |
[6] | Jin Yu-kai, Li Zhi-sheng, Ou Yao-chun, Zhang Hua-gang, Zeng Jiang-yi, Chen Bo-chao. Prediction and Comparative Study of PM2.5 Concentration Based on Multi-stage Clustering [J]. Journal of Guangdong University of Technology, 2023, 40(03): 17-24.doi: 10.12052/gdutxb.240114 |
[7] | Liu Dong-ning, Wang Zi-qi, Zeng Yan-jiao, Wen Fu-yan, Wang Yang. Prediction Method of Gene Methylation Sites Based on LSTM with Compound Coding Characteristics [J]. Journal of Guangdong University of Technology, 2023, 40(01): 1-9.doi: 10.12052/gdutxb.240114 |
[8] | Xu Wei-feng, Cai Shu-ting, Xiong Xiao-ming. Visual Inertial Odometry Based on Deep Features [J]. Journal of Guangdong University of Technology, 2023, 40(01): 56-60,76.doi: 10.12052/gdutxb.240114 |
[9] | Liu Hong-wei, Lin Wei-zhen, Wen Zhan-ming, Chen Yan-jun, Yi Min-qi. A MABM-based Model for Identifying Consumers' Sentiment Polarity―Taking Movie Reviews as an Example [J]. Journal of Guangdong University of Technology, 2022, 39(06): 1-9.doi: 10.12052/gdutxb.240114 |
[10] | Zhang Yun, Wang Xiao-dong. A Review and Thinking of Deep Learning with a Restricted Number of Samples [J]. Journal of Guangdong University of Technology, 2022, 39(05): 1-8.doi: 10.12052/gdutxb.240114 |
[11] | Zheng Jia-bi, Yang Zhen-guo, Liu Wen-yin. Marketing-Effect Estimation Based on Fine-grained Confounder Balancing [J]. Journal of Guangdong University of Technology, 2022, 39(02): 55-61.doi: 10.12052/gdutxb.240114 |
[12] | Gary Yen, Li Bo, Xie Sheng-li. An Evolutionary Optimization of LSTM for Model Recovery of Geophysical Fluid Dynamics [J]. Journal of Guangdong University of Technology, 2021, 38(06): 1-8.doi: 10.12052/gdutxb.240114 |
[13] | Lai Jun, Liu Zhen-yu, Liu Sheng-hai. A Small Sample Data Prediction Method Based on Global Data Shuffling [J]. Journal of Guangdong University of Technology, 2021, 38(03): 17-21.doi: 10.12052/gdutxb.240114 |
[14] | Cen Shi-jie, He Yuan-lie, Chen Xiao-cong. A Monocular Depth Estimation Combined with Attention and Unsupervised Deep Learning [J]. Journal of Guangdong University of Technology, 2020, 37(04): 35-41.doi: 10.12052/gdutxb.240114 |
[15] | Zeng Bi, Ren Wan-ling, Chen Yun-hua. An Unpaired Face Illumination Normalization Method Based on CycleGAN [J]. Journal of Guangdong University of Technology, 2018, 35(05): 11-19.doi: 10.12052/gdutxb.240114 |
|