Journal of Guangdong University of Technology ›› 2025, Vol. 42 ›› Issue (1): 51-59.doi: 10.12052/gdutxb.230194
• Smart Medical • Previous Articles
Xu Pingping1, Huang Guoheng1, Zhao Qin2, Chen Yijia1
CLC Number:
[1] SCHELTENS P, DE STROOPER B, KIVIPELTO M, et al. Alzheimer's disease [J]. Lancet, 2021, 397(10284): 1577-1590. [2] LEMPRIÈRE S. New tools could improve Alzheimer disease diagnosis from structural MRI [J]. Nature Reviews Neurology, 2020, 16(6): 297-297. [3] ANTONAKAKIS M, DIMITRIADIS S I, ZERVAKIS M, et al. Aberrant whole-brain transitions and dynamics of spontaneous network microstates in mild traumatic brain injury [J]. Frontiers in Computational Neuroscience, 2019, 13: 90-90. [4] SUDHARSAN M, THAILAMBAL G. Alzheimer's disease prediction using machine learning techniques and principal component analysis (PCA) [J]. Materials Today: Proceedings, 2023, 81: 182-190. [5] DOU X, YAO H, FENG F, et al. Characterizing white matter connectivity in Alzheimer's disease and mild cognitive impairment: an automated fiber quantification analysis with two independent datasets [J]. Cortex, 2020, 129: 390-405. [6] 罗刚, 泮思林, 乔思波, 等. 深度学习技术在胎儿超声心动图图像自动识别中的应用[J]. 实用医学杂志, 2022, 38(14): 1830-1833. LUO G, PAN S L, QIAO S B, et al. Deep learning technology for automatic recognition of fetal echocardiography images [J]. The Journal of Practical Medicine, 2022, 38(14): 1830-1833. [7] 杨磊, 唐灿. 人工智能在乳腺癌超声诊断的应用价值[J]. 实用医学杂志, 2022, 38(1): 106-110. YANG L, TANG C. CAD machine diagnosis system in ultrasonic diagnosis of breast cancer [J]. The Journal of Practical Medicine, 2022, 38(1): 106-110. [8] 廖淑婷, 于向荣. 能谱CT和人工智能在甲状腺癌诊断中的应用[J]. 实用医学杂志, 2022, 38(2): 129-133. LIAO S T, YU X R. Application of spectral CT and artificial intelligence in the diagnosis of thyroid cancer [J]. The Journal of Practical Medicine, 2022, 38(2): 129-133. [9] LIU M, ZHANG J, ADELI E, et al. Landmark-based deep multi-instance learning for brain disease diagnosis [J]. Medical Image Analysis, 2018, 43: 157-168. [10] LIAN C, LIU M, ZHANG J, et al. Hierarchical fully convolutional network for joint atrophy localization and Alzheimer’s disease diagnosis using structural mri [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 42(4): 880-893. [11] ZHU W, SUN L, HUANG J, et al. Dual attention multi-instance deep learning for Alzheimer’s disease diagnosis with structural MRI [J]. IEEE Transactions on Medical Imaging, 2021, 40(9): 2354-2366. [12] 曾安, 黄殷, 潘丹, 等. 基于卷积循环神经网络的阿尔茨海默症早期诊断[J]. 生物医学工程研究, 2020, 39(3): 249-255. ZENG A, HUANG Y, PAN D, et al. Early diagnosis of Alzheimer's disease based on convolutional recurrent neural network [J]. Journal of Biomedical Engineering Research, 2020, 39(3): 249-255. [13] 王聪, 袁榕澳, 李川. 基于3D卷积神经网络的阿尔茨海默症及轻度认知功能障碍诊断[J]. 现代计算机, 2021(11): 120-123. WANG C, YUAN R A, LI C. Analysis of Alzheimer’s disease medical images based on deep machine learning [J]. Modern Computer, 2021(11): 120-123. [14] QIN Z, LIU Z, GUO Q, et al. 3D convolutional neural networks with hybrid attention mechanism for early diagnosis of Alzheimer’s disease [J]. Biomedical Signal Processing and Control, 2022, 77: 103828. [15] ZHANG J, ZHOU L, WANG L, et al. Diffusion kernel attention network for brain disorder classification [J]. IEEE Transactions on Medical Imaging, 2022, 41(10): 2814-2827. [16] 石磊, 彭少康, 张亚萌, 等. 基于特征增强金字塔网络的阿尔茨海默症早期诊断研究[J]. 数据采集与处理, 2022, 37(4): 727-735. SHI L, PENG S K, ZHANG Y M, et al. Early diagnosis of Alzheimer’s disease based on feature enhanced pyramid network [J]. Journal of Data Acquisition and Processing, 2022, 37(4): 727-735. [17] ZHANG X, HAN L, ZHU W, et al. An explainable 3D residual self-attention deep neural network for joint atrophy localization and Alzheimer’s disease diagnosis using structural MRI [J]. IEEE Journal of Biomedical and Health Informatics, 2021, 26(11): 5289-5297. [18] ZHANG X, HAN L, HAN L, et al. sMRI-PatchNet: A novel efficient explainable patch-based deep learning network for Alzheimer’s disease diagnosis with structural MRI [J]. IEEE Access, 2023, 11: 108603-108616. [19] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems (NeurIPS). New York: ACM, 2017: 6000-6010. [20] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: transformers for image recognition at scale[EB/OL]. arXiv: 2010.11929 (2021-01-03) [2024-01-25]. https://doi.org/10.48550/arXiv.2010.11929 [21] LIU Z, LIN Y, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) . New York: IEEE, 2021: 9992-10002. [22] ZHU X, HU H, LIN S, et al. Deformable ConvNets V2: more deformable, better results[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . New York: IEEE, 2019: 9300-9308. [23] ZHU X, SU W, LU L, et al. Deformable detr: deformable transformers for end-to-end object detection[EB/OL]. arXiv: 2010.04159 (2021-03-28) [2024-01-25]. https://doi.org/10.48550/arXiv.2010. 04159 [24] CHEN Z, ZHU Y, ZHAO C, et al. DPT: deformable patch-based transformer for visual recognition[C]//Proceedings of the 29th ACM International Conference on Multimedia. New York: Association for Computing Machinery, 2021: 2899-2907. [25] XIA Z, PAN X, SONG S, et al. Vision transformer with deformable attention[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos: IEEE, 2022: 4784-4793. [26] JACK J C R, BERNSTEIN M A, FOX N C, et al. The Alzheimer's disease neuroimaging initiative (ADNI) : MRI methods [J]. Journal of Magnetic Resonance Imaging, 2008, 27(4): 685-691. [27] PENNY W D, FRISTON K J, ASHBURNER J T, et al. Statistical parametric mapping: the analysis of functional brain images[M]. Amsterdam: Academic Press, 2007: 1-647. [28] DING X, ZHANG X, MA N, et al. RepVGG: Making VGG-style convnets great again[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville: IEEE, 2021: 13728-13737. [29] PAN X, PHAN T L, ADEL M, et al. Multi-view separable pyramid network for AD prediction at MCI stage by 18 F-FDG brain PET imaging [J]. IEEE Transactions on Medical Imaging, 2020, 40(1): 81-92. [30] HUANG J, ZHOU L, WANG L, et al. Attention-diffusion-bilinear neural network for brain network analysis [J]. IEEE Transactions on Medical Imaging, 2020, 39(7): 2541-2552. |
[1] | Wang Biao, Zhong Yingchun, Luo Weishi, Zhu Shuang, Zeng Pujun. Segmentation and 3D Reconstruction of Meniscus Circumferential Fibers in MicroCT Images [J]. Journal of Guangdong University of Technology, 2025, 42(1): 42-50.doi: 10.12052/gdutxb.230194 |
[2] | Wang Ying, Cai Shu-ting, Xiong Xiao-ming. A Hotspot Detector Based on Active Learning and Visual State Space Models [J]. Journal of Guangdong University of Technology, 2024, 41(06): 45-51.doi: 10.12052/gdutxb.230194 |
[3] | Luo Cheng, Zhang Jun. Adaptive Sampling and Memory-augmented Compressed Sensing Algorithm Based on Deep Learning [J]. Journal of Guangdong University of Technology, 2024, 41(04): 114-121.doi: 10.12052/gdutxb.230194 |
[4] | Liang Yu-chen, Cai Nian, Ouyang Wen-sheng, Xie Yi-ying, Wang Ping. CT Diagnosis of Chronic Obstructive Pulmonary Disease Based on Slice Correlation Information [J]. Journal of Guangdong University of Technology, 2024, 41(01): 27-33.doi: 10.12052/gdutxb.230194 |
[5] | Wu Ju-hua, Li Jun-feng, Tao Lei. Prediction of Adverse Drug Reactions Based on Knowledge Graph Embedding and Deep Learning [J]. Journal of Guangdong University of Technology, 2024, 41(01): 19-26,40.doi: 10.12052/gdutxb.230194 |
[6] | Wen Wen, Liu Ying, Cai Rui-chu, Hao Zhi-feng. Spatial-temporal Deep Regression Model for Multi-granularity Traffic Flow Prediction [J]. Journal of Guangdong University of Technology, 2023, 40(04): 1-8.doi: 10.12052/gdutxb.230194 |
[7] | Zhong Geng-jun, Li Dong. A Channel-splited Based Dual-branch Block for 3D Point Cloud Processing [J]. Journal of Guangdong University of Technology, 2023, 40(04): 18-23.doi: 10.12052/gdutxb.230194 |
[8] | Jin Yu-kai, Li Zhi-sheng, Ou Yao-chun, Zhang Hua-gang, Zeng Jiang-yi, Chen Bo-chao. Prediction and Comparative Study of PM2.5 Concentration Based on Multi-stage Clustering [J]. Journal of Guangdong University of Technology, 2023, 40(03): 17-24.doi: 10.12052/gdutxb.230194 |
[9] | Liu Dong-ning, Wang Zi-qi, Zeng Yan-jiao, Wen Fu-yan, Wang Yang. Prediction Method of Gene Methylation Sites Based on LSTM with Compound Coding Characteristics [J]. Journal of Guangdong University of Technology, 2023, 40(01): 1-9.doi: 10.12052/gdutxb.230194 |
[10] | Xu Wei-feng, Cai Shu-ting, Xiong Xiao-ming. Visual Inertial Odometry Based on Deep Features [J]. Journal of Guangdong University of Technology, 2023, 40(01): 56-60,76.doi: 10.12052/gdutxb.230194 |
[11] | Liu Hong-wei, Lin Wei-zhen, Wen Zhan-ming, Chen Yan-jun, Yi Min-qi. A MABM-based Model for Identifying Consumers' Sentiment Polarity―Taking Movie Reviews as an Example [J]. Journal of Guangdong University of Technology, 2022, 39(06): 1-9.doi: 10.12052/gdutxb.230194 |
[12] | Zhang Yun, Wang Xiao-dong. A Review and Thinking of Deep Learning with a Restricted Number of Samples [J]. Journal of Guangdong University of Technology, 2022, 39(05): 1-8.doi: 10.12052/gdutxb.230194 |
[13] | Zheng Jia-bi, Yang Zhen-guo, Liu Wen-yin. Marketing-Effect Estimation Based on Fine-grained Confounder Balancing [J]. Journal of Guangdong University of Technology, 2022, 39(02): 55-61.doi: 10.12052/gdutxb.230194 |
[14] | Gary Yen, Li Bo, Xie Sheng-li. An Evolutionary Optimization of LSTM for Model Recovery of Geophysical Fluid Dynamics [J]. Journal of Guangdong University of Technology, 2021, 38(06): 1-8.doi: 10.12052/gdutxb.230194 |
[15] | Cui Tie-jun, Li Sha-sha. Realization of Intrinsic Safety in Production Process Based on Artificial Intelligence [J]. Journal of Guangdong University of Technology, 2021, 38(06): 84-90.doi: 10.12052/gdutxb.230194 |
|